The allopolyploid speciation process faces the genomic challenge of stoichiometric disruption caused by merging biparental nuclear genomes with only one (usually maternal) of the two sets of progenitor cytoplasmic genomes. The photosynthetic protein 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is composed of nuclear-encoded small subunits (SSUs) and plastome-encoded large subunits (LSUs), making it an ideal enzyme to explore the evolution process of cytonuclear accommodation. We investigated the variation of SSUs and their encoding genes in synthetic nascent rice ( L.) allotetraploid lineages, formed from the parental subspecies and of Asian rice. The evolution of genes in rice subspecies involves both mutation and concerted homogenization. Within reciprocal rice hybrids and allopolyploids, there was no consistent pattern of biased expression of alleles or homeologs, nor was there biased gene conversion favoring the maternal gene copies. Instead, we observed an apparently stochastic pattern of intergenomic gene conversions and biased expression of homeologs. We conclude that in young rice allopolyploids, cytonuclear coordination either is not selectively favored because of high parental sequence similarity or because there has been insufficient time for subtle selective effects to become observable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3835/plantgenome2017.05.0041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!