USP11 deubiquitinates RAE1 and plays a key role in bipolar spindle formation.

PLoS One

Imperial College London, Department of Medicine, Division of Infectious Diseases, Norfolk Place, London, United Kingdom.

Published: February 2018

Correct segregation of the mitotic chromosomes into daughter cells is a highly regulated process critical to safeguard genome stability. During M phase the spindle assembly checkpoint (SAC) ensures that all kinetochores are correctly attached before its inactivation allows progression into anaphase. Upon SAC inactivation, the anaphase promoting complex/cyclosome (APC/C) E3 ligase ubiquitinates and targets cyclin B and securin for proteasomal degradation. Here, we describe the identification of Ribonucleic Acid Export protein 1 (RAE1), a protein previously shown to be involved in SAC regulation and bipolar spindle formation, as a novel substrate of the deubiquitinating enzyme (DUB) Ubiquitin Specific Protease 11 (USP11). Lentiviral knock-down of USP11 or RAE1 in U2OS cells drastically reduces cell proliferation and increases multipolar spindle formation. We show that USP11 is associated with the mitotic spindle, does not regulate SAC inactivation, but controls ubiquitination of RAE1 at the mitotic spindle, hereby functionally modulating its interaction with Nuclear Mitotic Apparatus protein (NuMA).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749825PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190513PLOS

Publication Analysis

Top Keywords

spindle formation
12
bipolar spindle
8
sac inactivation
8
mitotic spindle
8
spindle
6
usp11
4
usp11 deubiquitinates
4
rae1
4
deubiquitinates rae1
4
rae1 plays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!