Detrimental changes in the composition and function of rotator cuff (RC) muscles are hallmarks of RC disease progression. Previous studies have demonstrated both atrophic and degenerative muscle loss in advanced RC disease. However, the relationship between gene expression and RC muscle pathology remains poorly defined, in large part due to a lack of studies correlating gene expression to tissue composition. Therefore, the purpose of this study was to determine how tissue composition relates to gene expression in muscle biopsies from patients undergoing reverse shoulder arthroplasty (RSA). Gene expression related to myogenesis, atrophy and cell death, adipogenesis and metabolism, inflammation, and fibrosis was measured in 40 RC muscle biopsies, including 31 biopsies from reverse shoulder arthroplasty (RSA) cases that had available histology data and 9 control biopsies from patients with intact RC tendons. After normalization to reference genes, linear regression was used to identify relationships between gene expression and tissue composition. Hierarchical clustering and principal component analysis (PCA) identified unique clusters, and fold-change analysis was used to determine significant differences in expression between clusters. We found that gene expression profiles were largely dependent on muscle presence, with muscle fraction being the only histological parameter that was significantly correlated to gene expression by linear regression. Similarly, samples with histologically-confirmed muscle distinctly segregated from samples without muscle. However, two sub-groups within the muscle-containing RSA biopsies suggest distinct phases of disease, with one group expressing markers of both atrophy and regeneration, and another group not significantly different from either control biopsies or biopsies lacking muscle. In conclusion, this study provides context for the interpretation of gene expression in heterogeneous and degenerating muscle, and provides further evidence for distinct stages of RC disease in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749784 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190439 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!