In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter being one of the most successful targets for cancer therapy. We propose an investigation on the coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for biological and medical applications. In our opinion, optomechanical methods can accurately monitor and control the mechanical properties of isolated MTs in a liquid environment. Consequently, studying nanomechanical properties of MTs may give useful information for future applications to diagnostic and therapeutic technologies involving non-invasive externally applied physical fields. For example, electromagnetic fields or high intensity ultrasound can be used therapeutically avoiding harmful side effects of chemotherapeutic agents or classical radiation therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/4651 | DOI Listing |
Curr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
Nucleic Acids Res
January 2025
Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan.
Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFJ Clin Med
December 2024
Pető András Faculty, Semmelweis University, 1125 Budapest, Hungary.
Cerebral palsy (CP) manifests with abnormal posture and impaired selective motor control, notably affecting trunk control and dynamic balance coordination, leading to inadequate postural control. Previous research has indicated the benefits of pulsed electromagnetic field (PEMF) therapy for various musculoskeletal and neurological conditions. Therefore, we conducted a randomized pilot study to assess the feasibility of our preliminary research design and examine the effect of the PEMF treatment among children with CP.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Computer-Aided Design and Test (CADT) Research Group, McMaster University, Hamilton, ON L8S 4L8, Canada.
A parallelized field-programmable gate array (FPGA) architecture is proposed to realize an ultra-fast, compact, and low-cost dual-channel ultra-wideband (UWB) pulsed-radar system. This approach resolves the main shortcoming of current FPGA-based radars, namely their low processing throughput, which leads to a significant loss of data provided by the radar receiver. The architecture is integrated with an in-house UWB pulsed radar operating at a sampling rate of 20 gigasamples per second (GSa/s).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!