AI Article Synopsis

  • Modern microtechnology allows for more channels in neural recording circuits, but this also increases data bandwidth, creating challenges in power use and data transmission, particularly for wireless systems.
  • The paper introduces a 64-channel neural recording system-on-chip that is low-noise and low-power, featuring configurable channels and the ability to detect neural spikes while minimizing data output through a unique event-driven system.
  • This system employs on-chip processing for real-time spike detection, reducing data by a factor of 100, and is optimized for low latency output, making it suitable for closed-loop systems, all while using compact and efficient CMOS technology.

Article Abstract

Modern microtechnology is enabling the channel count of neural recording integrated circuits to scale exponentially. However, the raw data bandwidth of these systems is increasing proportionately, presenting major challenges in terms of power consumption and data transmission (especially for wireless systems). This paper presents a system that exploits the sparse nature of neural signals to address these challenges and provides a reconfigurable low-bandwidth event-driven output. Specifically, we present a novel 64-channel low-noise (2.1 V), low-power (23  W per analogue channel) neural recording system-on-chip (SoC). This features individually configurable channels, 10-bit analogue-to-digital conversion, digital filtering, spike detection, and an event-driven output. Each channel's gain, bandwidth, and sampling rate settings can be independently configured to extract local field potentials at a low data-rate and/or action potentials (APs) at a higher data rate. The sampled data are streamed through an SRAM buffer that supports additional on-chip processing such as digital filtering and spike detection. Real-time spike detection can achieve 2 orders of magnitude data reduction, by using a dual polarity simple threshold to enable an event driven output for neural spikes (16-sample window). The SoC additionally features a latency-encoded asynchronous output that is critical if used as part of a closed-loop system. This has been specifically developed to complement a separate on-node spike sorting coprocessor to provide a real-time (low latency) output. The system has been implemented in a commercially available 0.35-m CMOS technology occupying a silicon area of 19.1 mm (0.3 mm gross per channel), demonstrating a low-power and efficient architecture that could be further optimized by aggressive technology and supply voltage scaling.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2017.2759339DOI Listing

Publication Analysis

Top Keywords

neural recording
12
spike detection
12
event-driven output
8
digital filtering
8
filtering spike
8
data
6
neural
5
output
5
64-channel versatile
4
versatile neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!