We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b09168DOI Listing

Publication Analysis

Top Keywords

salt removal
16
differential charge
12
charge efficiency
12
flow-through electrode
8
capacitive deionization
8
electric charging
8
mass transport
8
advection-limited regime
8
regime differential
8
flow rate
8

Similar Publications

Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at different stages.

Patients And Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports (6,280 cancer and 13,257 noncancer cases).

View Article and Find Full Text PDF

Recovery of wastewater from the pulp and paper industry by cellulose acetate reverse osmosis membrane.

Int J Biol Macromol

January 2025

Key Laboratory of Pulp and Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.

The high salt content and color are regarded as a major challenge to the reuse of industrial wastewater. In the present study, the application of cellulose acetate reverse osmosis (RO) membrane in combination with microfiltration (MF), ultrafiltration (UF), or nanofiltration (NF) process was investigated in the purification of biological and Fenton treated pulp and paper wastewater. In the first step, the effect of pH and inlet pressures on the membrane fouling was investigated.

View Article and Find Full Text PDF

Substantial amounts of oily wastewater are inevitably generated during petroleum extraction and petrochemical production, and the effective treatment of these O/W emulsions is crucial for environmental protection and resource recovery. The development of an environmentally friendly, cost-effective, and efficient demulsifier that operates effectively at low concentrations remains a significant challenge. This study introduces an eco-friendly ionic liquid demulsifier, Cotton Cellulose-Dodecylamine (CCDA), which demonstrates exceptional demulsification performance at low concentrations.

View Article and Find Full Text PDF

Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).

Methods: MSSA and E.

View Article and Find Full Text PDF

Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!