The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969240 | PMC |
http://dx.doi.org/10.1002/anie.201711060 | DOI Listing |
Talanta
December 2024
University of Lodz, Department of Inorganic and Analytical Chemistry, Electroanalysis and Electrochemistry Group, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland. Electronic address:
This article describes the effect of non-stabilized magnetic particles FeO (nanoparticles aggregates) addition to the aqueous phase of the polarized liquid-liquid interface (LLI) on the interfacial ion transfer processes. LLI was formed between 1,2-dichloroethane and water solutions (1,2 DCE)|water. The synthesis of FeO magnetic particles (MPs) was achieved by the co-precipitation method, after which their appearance, size of aggregates, and zeta potential were assessed.
View Article and Find Full Text PDFChemSusChem
December 2024
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
Controlling the redox ability is crucial for optimizing catalytic processes in clean energy, environmental protection, and CO reduction, as it directly influences the reaction efficiency and electron transfer rates, driving sustainable and effective outcomes. Here, we report the plasma-electrified synthesis of composition-controlled FeAu bimetallic nanoparticles, specifically engineered to enhance the redox catalytic performance through precise tuning of their chemical states. Utilizing atmospheric-pressure microplasmas, FeAu nanoparticles were synthesized under ambient conditions without the need for reducing agents or organic solvents, thereby providing a green and sustainable approach.
View Article and Find Full Text PDFSmall
December 2024
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden.
The electrified production of hydrogen peroxide (HO) by oxygen reduction reaction (ORR) is attractive to increase the sustainability of chemical industry. Here the same chains of intrinsically conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) are utilized, as ORR electrocatalyst, while varying polymeric primary dopants (PSS and Nafion) and the level of secondary doping with DMSO. These changes modulate various properties of the film, such as its microscale organization and electronic conductivity.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
Algae-laden brackish water (ABW) has remarkably threatened drinking water safety in warm coastal areas. Although gravity-driven ceramic membrane filtration (GDCM) exhibits high potential in ABW treatment during decentralized water supply, membrane fouling is still a critical problem. Herein, GDCM was skillfully electro-functionalized (EGDCM) by in-situ electro-oxidation (ISEO) based on self-fabricated Ti/SnO-Sb dimensionally stable anode (DSA) (EO-EGDCM) and ex-situ electro-coagulation (ESEC) based on iron anode (EC-EGDCM) in this study.
View Article and Find Full Text PDFACS Nano
December 2024
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
High-energy lithium (Li)-based batteries, especially rechargeable Li-CO batteries with CO fixation capability and high energy density, are desirable for electrified transportation and other applications. However, the challenges of poor stability, low energy efficiency, and leakage of liquid electrolytes hinder the development of Li-CO batteries. Herein, a highly conductive and stable metalorganic framework-encapsulated ionic liquid (IL@MOF) electrolyte system is developed for quasi-solid-state Li-CO batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!