Application of the biotin-labeled toxin mutant for affinity isolation of associated proteins in the mammalian cells.

J Biosci Bioeng

Department of Food and Nutrition, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Dae-Jeon 34134, South Korea. Electronic address:

Published: May 2018

AI Article Synopsis

  • Cholera toxin (CT), produced by Vibrio cholerae, disrupts the intestinal barrier and leads to severe diarrhea; this study investigates how the toxin moves from the endoplasmic reticulum (ER) to the cytosol of host cells.
  • Researchers created a mutant CT by adding a 15 amino acid Biotin Acceptor Peptide (BAP) to enhance isolation, achieving nearly 100% biotinylation while maintaining its toxicity.
  • The study found that while NeutrAvidin successfully pulled down the biotinylated CT, the complex inhibited the toxin's function, suggesting it might help identify proteins interacting with CT during its retro-translocation in host cells.

Article Abstract

Cholera toxin (CT), one of the AB bacterial toxin families, is produced by Vibrio cholerae, breeches the intestinal epithelial barrier and enters host epithelial cells to cause the massive secretory diarrhea. This study focused on understanding the retro-translocation machinery of the bacterial toxin using biotin-avidin technology to explain toxin trafficking from the endoplasmic reticulum (ER) to the cytosol. Because the association between the A1 chain of CT and other components of the retro-translocation machinery is likely transient or very weak, the successful bioengineering of such a mutant to be trapped as an intermediate in ER is essential for affinity isolation and further analysis. Here, we prepared a mutant toxin that 15 amino acid Biotin Acceptor Peptide (BAP) was fused to the C-terminal of A1 chain of CT. Biotinylation efficiency of the BAP-inserted cholera toxin (BT) was nearly 100%. Moreover, BT was functionally toxic and successfully pulled down by NeutrAvidin in vitro and in vivo. However, NeutrAvidin-bound biotinylated BT was not toxic. These results suggest the possibility of a plug effect of the biotin-NeutrAvidin-BT complex stuck in the ER without retro-translocation to the cytosol. Therefore, this model might identify the interacting proteins with A1 chain of CT in the host cells by holding the moment of retro-translocation of the bacterial toxin. In conclusion, this study established the model using biotin-avidin technology to elucidate the molecular basis for retro-translocation of bacterial toxin from within the lumen of ER to the cytosol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2017.12.002DOI Listing

Publication Analysis

Top Keywords

bacterial toxin
16
toxin
9
affinity isolation
8
cholera toxin
8
retro-translocation machinery
8
biotin-avidin technology
8
retro-translocation bacterial
8
retro-translocation
5
application biotin-labeled
4
biotin-labeled toxin
4

Similar Publications

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization.

Int J Mol Sci

January 2025

Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!