β-d-Galactosidase is an important enzyme in the dairy industry, and the enzyme from the yeast Kluyveromyces lactis is most widely used. Here, we report immobilization of the enzyme on a silica/chitosan composite support, devised to have 10% and 20% chitosan (SiQT10 and SiQT20, respectively). Morphological and textural characterizations showed that chitosan is dispersed in micrometric regions in silica. For comparison, a silica organofunctionalized with 3-aminopropyltrimethoxysilane (SiOaptms) was prepared. Performance of the biocatalysts was tested for lactose hydrolysis, and the enzyme immobilized in SiQT10 and SiQT20 composites showed higher efficiency (62% and 47%, respectively) compared with the enzyme in SiOaptms. Operational stability in this system was evaluated for the first time. After 200 h of continuous use in a fixed-bed reactor, SiQT10 remained with approximately 90% activity. Thus, in addition to demonstrating compatibility for food processing, these results align the enzyme stabilization properties of chitosan with the mechanical resistance of silica.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2017.11.026DOI Listing

Publication Analysis

Top Keywords

siqt10 siqt20
8
enzyme
6
highly stable
4
stable novel
4
novel silica/chitosan
4
silica/chitosan support
4
support β-galactosidase
4
β-galactosidase immobilization
4
immobilization application
4
application dairy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!