A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silencing RIF1 decreases cell growth, migration and increases cisplatin sensitivity of human cervical cancer cells. | LitMetric

Silencing RIF1 decreases cell growth, migration and increases cisplatin sensitivity of human cervical cancer cells.

Oncotarget

Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.

Published: December 2017

Replication timing regulatory factor 1 (RIF1) plays an important role in DNA replication regulation, stem cell pluripotency and DNA repair pathway. However, little is known about the molecular mechanisms and physiological significance of RIF1 in cancer and chemotherapy efficacy. In this study, we found that RIF1 is upregulated in cervical cancer tissues compared with normal tissues both at mRNA and protein levels through online databases. RIF1 knockdown reduced cervical cancer cell growth, colony formation, migration and epithelial-mesenchymal transition (EMT) markers. Flow cytometry analysis indicated that RIF1 knockdown induced apoptosis and G2 cell cycle arrest. Furthermore, RIF1 knockdown increased cisplatin sensitivity, cisplatin-induced G2/M phase arrest, apoptosis and led to defects in DNA repair in a concentration-dependent manner. In terms of mechanism research, increased CDKN1A expression and Bax/Bcl-2/caspase-3 signaling pathway might be involved in the G2/M phase arrest and increased apoptosis in RIF1-silenced cervical cancer cells. Thus, these findings indicate that RIF1 knockdown prior to chemotherapy may be a potential effective therapeutic strategy for cervical cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739795PMC
http://dx.doi.org/10.18632/oncotarget.22315DOI Listing

Publication Analysis

Top Keywords

cervical cancer
20
rif1 knockdown
16
cell growth
8
cisplatin sensitivity
8
cancer cells
8
dna repair
8
g2/m phase
8
phase arrest
8
rif1
7
cancer
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!