Arteries in the upper limb play important roles in the circulation system of the human body. In particular, the radial artery has received considerable attention in traditional Chinese medicine for thousands of years. Here, a 3D model for the arm arteries has been created uncomplicated, in a Chinese adult's left hand, from the magnetic resonance imaging data, using professional modeling software to restore the basic structure of the arm artery in human body, before being imported to Ansys software for simulation. Blood model has been only simulated, and using the blood density of constant parameter and viscosity using the Carreau fluid model, and using viscous-laminar model of Fluent to obtain the velocity profile, static pressure and shear stress in the brachial, interosseous, ulnar, radial and palmar arch arteries. In particular, the brachial and bifurcations have the high pressure and velocity profiles. The simulation results obtained here are also validated by those published in the literature and proved the ulnar artery prevails over the radial artery as a blood supplier to the vessels in the wrist and hand.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743233 | PMC |
http://dx.doi.org/10.4015/S1016237217500314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!