Semiconductor nanowires could significantly boost the functionality and performance of future electronics, light-emitting diodes, and solar cells. However, realizing this potential requires growth methods that enable high-throughput and low-cost production of nanowires with controlled doping. Aerotaxy is an aerosol-based method with extremely high growth rate that does not require a growth substrate, allowing mass-production of high-quality nanowires at a low cost. So far, pn-junctions, a crucial element of solar cells and light-emitting diodes, have not been realized by Aerotaxy growth. Here we report a further development of the Aerotaxy method and demonstrate the growth of GaAs nanowire pn-junctions. Our Aerotaxy system uses an aerosol generator for producing the catalytic seed particles, together with a growth reactor with multiple consecutive chambers for growth of material with different dopants. We show that the produced nanowire pn-junctions have excellent diode characteristics with a rectification ratio of >10, an ideality factor around 2, and very promising photoresponse. Using electron beam induced current and hyperspectral cathodoluminescence, we determined the location of the pn-junction and show that the grown nanowires have high doping levels, as well as electrical properties and diffusion lengths comparable to nanowires grown using metal organic vapor phase epitaxy. Our findings demonstrate that high-quality GaAs nanowire pn-junctions can be produced using a low-cost technique suitable for mass-production, paving the way for industrial-scale production of nanowire-based solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b04609 | DOI Listing |
Nanotechnology
May 2022
Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Japan.
We report on the characterization of wurtzite (WZ) InP nanowire (NW) light-emitting diodes (LEDs) with different pn junctions (axial and radial). The series resistance tended to be smaller in the NW-LED using core-shell InP NWs with a radial pn junction than in the NW-LED using InP NWs with an axial pn junction, indicating that radial pn junctions are more suitable for current injection. The electroluminescence (EL) properties of both NW LEDs revealed that the EL had three peaks originating from the zinc-blende (ZB) phase, WZ phase, and ZB/WZ heterojunction.
View Article and Find Full Text PDFNano Lett
February 2018
Sol Voltaics AB , Scheelevägen 63, 223 63 Lund, Sweden.
Semiconductor nanowires could significantly boost the functionality and performance of future electronics, light-emitting diodes, and solar cells. However, realizing this potential requires growth methods that enable high-throughput and low-cost production of nanowires with controlled doping. Aerotaxy is an aerosol-based method with extremely high growth rate that does not require a growth substrate, allowing mass-production of high-quality nanowires at a low cost.
View Article and Find Full Text PDFNanotechnology
January 2018
Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden.
Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis.
View Article and Find Full Text PDFACS Nano
August 2017
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States.
A nanogenerator, as a self-powered system, can operate without an external power supply for energy harvesting, signal processing, and active sensing. Here, near-infrared (NIR) photothermal triggered pyroelectric nanogenerators based on pn-junctions are demonstrated in a p-Si/n-ZnO nanowire (NW) heterostructure for self-powered NIR photosensing. The pyroelectric-polarization potential (pyro-potential) induced within wurtzite ZnO NWs couples with the built-in electric field of the pn-junction.
View Article and Find Full Text PDFIn the past years, lots of research works were dedicated to nanowires and their integration into functional devices. However, despite the great potential of such materials, no device based on nanowires has been transferred in all-day-life. In fact, the vertical device integration is slowed down by the difficulty to contact easily the top electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!