Compounds designed to display polypharmacology may have utility in treating complex diseases, where activity at multiple targets is required to produce a clinical effect. In particular, suitable compounds may be useful in treating neurodegenerative diseases by promoting neuronal survival in a synergistic manner via their multi-target activity at the adenosine A and A receptors (AR and AR) and phosphodiesterase 10A (PDE10A), which modulate intracellular cAMP levels. Hence, in this work we describe a computational method for the design of synthetically feasible ligands that bind to A and A receptors and inhibit phosphodiesterase 10A (PDE10A), involving a retrosynthetic approach employing in silico target prediction and docking, which may be generally applicable to multi-target compound design at several target classes. This approach has identified 2-aminopyridine-3-carbonitriles as the first multi-target ligands at AR, AR and PDE10A, by showing agreement between the ligand and structure based predictions at these targets. The series were synthesized via an efficient one-pot scheme and validated pharmacologically as AR/AR-PDE10A ligands, with IC values of 2.4-10.0 μM at PDE10A and K values of 34-294 nM at AR and/or AR. Furthermore, selectivity profiling of the synthesized 2-amino-pyridin-3-carbonitriles against other subtypes of both protein families showed that the multi-target ligand 8 exhibited a minimum of twofold selectivity over all tested off-targets. In addition, both compounds 8 and 16 exhibited the desired multi-target profile, which could be considered for further functional efficacy assessment, analog modification for the improvement of selectivity towards AR, AR and PDE10A collectively, and evaluation of their potential synergy in modulating cAMP levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748027PMC
http://dx.doi.org/10.1186/s13321-017-0249-4DOI Listing

Publication Analysis

Top Keywords

multi-target ligands
8
ligands pde10a
8
neurodegenerative diseases
8
phosphodiesterase 10a
8
10a pde10a
8
camp levels
8
multi-target
6
pde10a
6
computer-aided design
4
design multi-target
4

Similar Publications

The pathology of Alzheimer's disease (AD) is complex due to its multifactorial nature and single targeting drugs proved inefficient. A series of novel 4-N-substituted-2-phenylquinazoline derivatives was designed and synthesized as potential multi-target directed ligands (MTDLs) through dual inhibition of AChE and MAO-B enzymes along with Aβ aggregation inhibition for the treatment of AD. Two compounds in the series, VAV-8 and VAV-19 were found to be the most potent inhibitors of both AChE and MAO-B enzymes and moderate inhibitor of Aβ, with good thermodynamic stability at the binding pocket of the enzymes.

View Article and Find Full Text PDF
Article Synopsis
  • Ebola virus (EBOV) is a highly deadly RNA virus that currently lacks effective treatments or vaccines, necessitating the urgent need for new therapeutic solutions.
  • In this study, researchers used in silico methods to evaluate natural products from traditional Chinese medicine against four critical EBOV proteins, employing molecular docking to assess their potential effectiveness.
  • The findings identified eight promising compounds with strong inhibitory effects on EBOV proteins, indicating their potential as antiviral agents due to their favorable interaction with protein residues and acceptable pharmacokinetic profiles.
View Article and Find Full Text PDF

Recent Advances in the Search for Effective Anti-Alzheimer's Drugs.

Int J Mol Sci

December 2024

Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland.

Alzheimer's disease, the most common form of dementia, is characterized by the deposition of amyloid plaques and neurofibrillary tangles in the brain, leading to the loss of neurons and a decline in a person's memory and cognitive function. As a multifactorial disease, Alzheimer's involves multiple pathogenic mechanisms, making its treatment particularly challenging. Current drugs approved for the treatment of Alzheimer's disease only alleviate symptoms but cannot stop the progression.

View Article and Find Full Text PDF

Recent advancements in the therapeutic approaches for Alzheimer's disease treatment: current and future perspective.

RSC Med Chem

December 2024

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani Pilani Campus, Vidya Vihar Pilani 333031 RJ India +91 1596 244183 +91 1596 255 506.

Alzheimer's disease (AD) is a complex, incurable neurological condition characterized by cognitive decline, cholinergic neuron reduction, and neuronal loss. Its exact pathology remains uncertain, but multiple treatment hypotheses have emerged. The current treatments, single or combined, alleviate only symptoms and struggle to manage AD due to its multifaceted pathology.

View Article and Find Full Text PDF

Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!