The extensive land occupation in Southeast Brazil has resulted in climatic disturbances and environmental contamination by air pollutants, threatening the Atlantic forest remnants that still exist in that region. Based on previous results, we assumed that pioneer tree species are potentially more tolerant against environmental oxidative stress than non-pioneer tree species from that Brazilian biome. We also assumed that reactive oxygen species (ROS) are accumulated in higher proportions in leaves of non-pioneer trees, resulting in changes in the oxidant-antioxidant balance and in more severe oxidative damage at the cellular level than in the leaves of pioneer trees. We tested these hypotheses by establishing the relationship between oxidants (ROS), changes in key antioxidants (among enzymatic and non-enzymatic compounds) and in a lipid peroxidation derivative in their leaves, as well as between ROS accumulation and oscillations in environmental stressors, thus permitting to discuss comparatively for the first time the oxidant-antioxidant balance and the tolerance capacity of tree species of the Atlantic Forest in SE Brazil. We confirmed that the non-pioneer tree species accumulated higher amounts of superoxide and hydrogen peroxide in palisade parenchyma and epidermis, showing a less effective antioxidant metabolism than the pioneer species. However, the non-pioneer species showed differing capacities to compensate the oxidative stress in both years of study, which appeared to be associated with the level of ROS accumulation, which was evidently higher in 2015 than in 2016. We also applied exploratory multivariate statistics, which revealed that the oscillations in these biochemical leaf responses in both functional groups coincided with the oscillations in both climatic conditions and air pollutants, seemingly showing that they had acclimated to the stressful oxidative environment observed and may perpetuate in the disturbed forest remnants located in SE Brazil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.12.255DOI Listing

Publication Analysis

Top Keywords

tree species
20
oxidant-antioxidant balance
12
oxidative stress
12
non-pioneer tree
12
atlantic forest
12
balance tolerance
8
species
8
air pollutants
8
forest remnants
8
accumulated higher
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!