Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Recently, biomaterials have been designed to contain redox-sensitive moieties, such as thiols and disulfides, to impart responsive degradation and/or controlled release. However, due to the high sensitivity of cellular redox-based systems which maintain free-radical homeostasis (e.g. glutathione/glutathione disulfide), if these biomaterials modify the cellular redox environment, they may inadvertently affect cellular compatibility and/or oxidative stress defenses. In this work, we hypothesize that the degradation products of a poly(β-amino ester) (PBAE) hydrogel formed with redox sensitive disulfide (cystamine) crosslinking could serve as a supplement to the environmental cellular antioxidant defenses. Upon introduction into a reducing environment, these disulfide-containing hydrogels cleave to present bound-thiol groups, yet remain in the bulk form at up to 66 mol% cystamine of the total amines. By controlling the molar fraction of cystamine, it was apparent that the thiol content varied human umbilical vein endothelial cell (HUVEC) viability IC values across an order of magnitude. Further, upon introduction of an enzymatic oxidative stress generator to the cell culture (HX/XO), pre-incubated thiolated hydrogel degradation products conferred cellular and mitochondrial protection from acute oxidative stress, whereas non-reduced disulfide-containing degradation products offered no protection. This polymer may be an advantageous implantable drug delivery system for use in acute oxidative stress prophylaxis and/or chronic oxidative stress cell therapies due to its solid/liquid reversibility in a redox environment, controlled thiolation, high loading capacity through covalent drug-addition, and simple post-synthesis modification which bound-thiols introduce.
Statement Of Significance: In this work, we demonstrate a unique property of disulfide containing degradable biomaterials. By changing the redox state of the degradation products (from oxidized to reduced), it is possible to increase the IC of the material by an order of magnitude. This dramatic shift is linked directly to the oxidative stress response of the cells and suggests a possible mechanism by which one can tune the cellular response to degradable biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803326 | PMC |
http://dx.doi.org/10.1016/j.actbio.2017.12.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!