Fishes of the New World cyprinodontiform family Fundulidae display a wide variety of tolerance to environmental conditions, making them a valuable model system for comparative, evolutionary, and environmental studies. Despite numerous attempts to resolve the phylogenetic relationships of family Fundulidae, the basal structure of the phylogeny remains unresolved. The lack of a robust and fully resolved phylogeny for family Fundulidae and its most speciose genus Fundulus is an impediment to future research. This study utilized novel RNA-sequencing data for phylogenetic inference among16 members of Fundulidae to better refine the basal nodes of the family and confront long-standing questions regarding (1) the monophyletic status of genus Fundulus, and validity of the Lucania and recently synonymized Adinia genera; (2) the relationship of the west coast endemic Fundulus parvipinnis and F. lima to other Fundulus species; and (3) the validity of subgeneric classifications. In addition, previously published nuclear gene sequences for 32 Fundulidae species were re-analyzed in combination with novel RNA-sequencing data. Maximum likelihood and Bayesian analyses generated identical phylogenies with strong statistical support at nearly all nodes, demonstrating the utility of RNA-sequencing data in constructing robust phylogenies not achievable by previous methods. While many past hypothesized evolutionary relationships for Fundulidae were reinforced, several alternative relationships are hypothesized at basal nodes resulting in a re-analysis of the deeper structure of family Fundulidae. These results reveal family Fundulidae as a paraphyletic grouping of members of genus Fundulus and Lucania and supports the previous synonymy of genus Adinia with genus Fundulus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2017.12.030 | DOI Listing |
Although sex determination is a fundamental process in vertebrate development, it is very plastic. Diverse genes became major sex determinants in teleost fishes. Deciphering how individual sex-determining genes orchestrate sex determination can reveal new actors in sexual development.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
June 2023
Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
Scale development and its regeneration potency were evaluated in a desert killifish Aphaniops hormuzensis (family Aphaniidae) in laboratory conditions by using light and scanning electron microscopy. Scale development in A. hormuzensis took 156 days at room temperature.
View Article and Find Full Text PDFMol Phylogenet Evol
August 2022
Department of Biological Science, Florida State University, Biomedical Research Facility, Tallahassee, FL 32306-4295, USA.
The Killifishes (Cyprinodontiformes) are a diverse and well-known group of fishes that contains sixteen families inclusive of Anablepidae, Aphaniidae Aplocheilidae, Cubanichthyidae, Cyprinodontidae, Fluviphylacidae, Fundulidae, Goodeidae, Nothobranchiidae, Orestiidae, Pantanodontidae, Poeciliidae, Procatopodidae, Profundulidae, Rivulidae, and Valenciidae and more than 1,200 species that are globally distributed in tropical and temperate, freshwater and estuarine habitats. The evolutionary relationships among the families within the group, based on different molecular and morphological data sets, have remained uncertain. Therefore, the objective of this study was to use a targeted approach, anchored hybrid enrichment, to investigate the phylogenetic relationships among the families within the Cyprindontiformes.
View Article and Find Full Text PDFParasitology
February 2022
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ap. Postal 70-153, C.P. 04510, Ciudad de México, Mexico.
Trematode taxonomy is mainly based on the morphological traits of adults. The identification of metacercariae is challenging because such traits are not developed in larval forms, and they even may show some level of morphological variability. Studies testing the potential correspondence between morphological differences and genetic variation of parasites are still lacking.
View Article and Find Full Text PDFBMC Ecol Evol
January 2022
Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
Background: The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!