Airway mucus hyperproduction and fluid imbalance are important hallmarks of cystic fibrosis (CF), the most common life-shortening genetic disorder in Caucasians. Dysregulated expression and/or function of airway ion transporters, including cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), have been implicated as causes of CF-associated mucus hypersecretory phenotype. However, the contributory roles of other substances and transporters in the regulation of CF airway pathogenesis remain unelucidated. Here, we identified a novel connection between CFTR/ENaC expression and the intracellular Zn concentration in the regulation of MUC5AC, a major secreted mucin that is highly expressed in CF airway. CFTR-defective and ENaC-hyperactive airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the zinc importer ZIP2/SLC39A2 (ΔC-ZIP2), which lacks the C-terminal domain. Importantly, ΔC-ZIP2 levels correlated inversely with wild-type ZIP2 and intracellular Zn levels. Moreover, the splice switch to ΔC-ZIP2 as well as decreased expression of other ZIPs caused zinc deficiency, which is sufficient for induction of MUC5AC; while ΔC-ZIP2 expression per se induced ENaC expression and function. Thus, our findings demonstrate that the novel splicing switch contributes to CF lung pathology via the novel interplay of CFTR, ENaC, and ZIP2 transporters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828551 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2017.12.025 | DOI Listing |
J Multidiscip Healthc
December 2024
Department of Epidemiology and Biostatistics, School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.
Background: Malnourished children in low- and middle-income countries (LMICs) often exhibit reduced vaccine efficacy, particularly for oral vaccines like polio and rotavirus, due to impaired immune responses. Nutritional deficiencies, such as in vitamin A and zinc, along with environmental factors like poor sanitation, exacerbate this issue. Existing research has explored the individual impacts of malnutrition on vaccine outcomes, but a comprehensive framework that integrates nutritional, immune, and environmental factors has been lacking.
View Article and Find Full Text PDFBone Res
January 2025
Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.
View Article and Find Full Text PDFAgeing Res Rev
December 2024
Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:
Traumatic brain injury (TBI) presents significant risks concerning mortality and morbidity. Individuals who suffer from TBI may exhibit mood disorders, including anxiety and depression. Both preclinical and clinical research have established correlations between TBI and disturbances in the metabolism of amino acids, lipids, iron, zinc, and copper, which are implicated in the emergence of mood disorders post-TBI.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran.
Water Res
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:
The peroxone reaction, a promising alternative technology for water treatment, is traditionally hampered by its restricted pH operational range and suboptimal oxidant utilization. In this study, we introduced a novel amphoteric metal oxide (ZnO)-regulated peroxone system that transcended the pH limitations of conventional peroxone processes. Our innovative approach exploited the unique properties of ZnO to regulate the reaction pathway of the traditional O/HO (or peroxymonosulfate, PMS) processes, resulting in a 52.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!