In this paper, we describe a novel solution to increase the speed of Time-Correlated Single Photon Counting (TCSPC) measurements by almost an order of magnitude while providing, in principle, zero distortion regardless of the experimental conditions. Typically, the relatively long dead time associated with the conversion electronics requires a proper tune of the excitation power in order to avoid distortions of the reconstructed waveform due to pileup and counting loss. As a result, the maximum operating rate of a TCSPC channel is now limited between 1% and 5% of the excitation frequency, thus leading to relatively long acquisition times. We show that negligible distortion (below 1%) is guaranteed if the dead time associated with the converter is kept below the dead time of the detector, and at the same time the detector dead time is matched to the duration of the excitation period. In this way, unprecedented high-speed operation is possible. In this paper, we provide a theoretical analysis of the technique, including the main non-idealities which are introduced by a generic physical implementation. The results are supported by both numerical simulations and analytical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4996690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!