Mesoscale eddies are one of the dominant sources of variability in the world's oceans. With eddy-resolving global ocean models, it becomes important to assimilate observations of mesoscale eddies to correctly represent the state of the mesoscale. Here, we investigate strategies for assimilating a reduced number of sea-surface height observations by focusing on the coherent mesoscale eddies. The study is carried out in an idealized perfect-model framework using two-layer forced quasigeostrophic dynamics, which captures the dominant dynamics of ocean mesoscale eddies. We study errors in state-estimation as well as error growth in forecasts and find that as fewer observations are assimilated, assimilating at vortex locations results in reduced state estimation and forecast errors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4986088 | DOI Listing |
Sci Bull (Beijing)
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266000/572000, China; Sanya Oceanographic Laboratory, Sanya 572000, China; Laboratory for Ocean Dynamics and Climate, Qingdao Marine Science and Technology Center, Qingdao 266000, China. Electronic address:
The South China Sea (SCS) is abundant with complex multiscale dynamic processes but their spatiotemporal variations, generation and evolution mechanisms, and mutual interactions remain inadequately understood due to the lack of long-term in situ observations. To explore oceanic multiscale dynamics in the SCS, the SCS Mooring Array (SCSMA) was began to be constructed since 2009. The SCSMA consists of ∼40 moorings and is the largest in situ ocean observing system in marginal seas worldwide.
View Article and Find Full Text PDFSci Rep
November 2024
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000, Grenoble, France.
The most prominent and persistent feature of the eastern Mediterranean Levantine Basin (LB) is the warm anticyclonic Cyprus Eddy (CE) located above the Eratosthenes Seamount (ESM). This eddy periodically couples with two smaller cyclonic and anticyclonic eddies, the South Shikmona Eddy (SSE) and North Shikmona Eddy (NSE), which form downstream. The reason for the zonal drift of the CE center and the formation mechanism of the CE, SSE and NSE is largely debated today, yet the upwelling and biological productivity of the LB can be strongly impacted by the local dynamics.
View Article and Find Full Text PDFSci Rep
November 2024
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA.
Ocean mesoscale eddies, with km size, present in energetic regions of the global ocean, are known to impact local and remote atmospheric weather. The impact of eddies in the Mediterranean Sea on the local weather, however, remains largely unknown. Here, we study this impact during an extreme weather event observed over Israel on January , 2020, resulting in heavy rains and floods.
View Article and Find Full Text PDFChaos
November 2024
Potsdam Inst Climate Impact Res, POB 601203, D-14412 Potsdam, Germany.
Mesoscale eddies have attracted increased attention due to their central role in ocean energy and mass transport. The observations of their three-dimensional structure will facilitate the understanding of nonlinear eddy dynamics. In this paper, we propose a novel framework, the mesoscale eddy characterization from ordinal modalities recurrence networks method (MeC-OMRN), that utilizes a Petrel-II underwater glider for in situ observations and vertical structure characterization of a moving mesoscale eddy in the northern South China Sea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!