Ocean eddies and climate predictability.

Chaos

Department of Atmospheric Sciences, University of Miami - Rosenstiel School for Marine and Atmospheric Science, Miami, Florida 33149-1098, USA.

Published: December 2017

A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4990034DOI Listing

Publication Analysis

Top Keywords

interactive ensemble
16
mesoscale ocean
12
ocean features
12
sst variance
12
climate predictability
8
simulations experiments
8
climate variability
8
ensemble coupling
8
coupling strategy
8
oceanic mesoscale
8

Similar Publications

Groundwater resources constitute one of the primary sources of freshwater in semi-arid and arid climates. Monitoring the groundwater quality is an essential component of environmental management. In this study, a comprehensive comparison was conducted to analyze the performance of nine ensembles and regular machine learning (ML) methods in predicting two water quality parameters including total dissolved solids (TDS) and pH, in an area with semi-arid climate conditions.

View Article and Find Full Text PDF

Persistence and neutrality in interacting replicator dynamics.

J Math Biol

January 2025

Instituto de Ingeniería Matemática, Universidad de Valparaíso, Valparaíso, Chile.

We study the large-time behavior of an ensemble of entities obeying replicator-like stochastic dynamics with mean-field interactions as a model for a primordial ecology. We prove the propagation-of-chaos property and establish conditions for the strong persistence of the N-replicator system and the existence of invariant distributions for a class of associated McKean-Vlasov dynamics. In particular, our results show that, unlike typical models of neutral ecology, fitness equivalence does not need to be assumed but emerges as a condition for the persistence of the system.

View Article and Find Full Text PDF

Aging in a weighted ensemble of excitable and self-oscillatory neurons: The role of pairwise and higher-order interactions.

Chaos

January 2025

International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Bunkyo Ku, Tokyo 113 8654, Japan.

We investigate the aging transition in networks of excitable and self-oscillatory units as the fraction of inherently excitable units increases. Two network topologies are considered: a scale-free network with weighted pairwise interactions and a two-dimensional simplicial complex with weighted scale-free pairwise and triadic interactions. Without triadic interactions, the aging transition from collective oscillations to oscillation death (inhomogeneous stationary states) can occur either suddenly or through an intermediate state of partial oscillation.

View Article and Find Full Text PDF

Evaluation of machine learning algorithms and computational structural validation of CYP2D6 in predicting the therapeutic response to tamoxifen in breast cancer.

Eur Rev Med Pharmacol Sci

December 2024

Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.

Objective: CYP2D6 plays a critical role in metabolizing tamoxifen into its active metabolite, endoxifen, which is crucial for its therapeutic effect in estrogen receptor-positive breast cancer. Single nucleotide polymorphisms (SNPs) in the CYP2D6 gene can affect enzyme activity and thus impact tamoxifen efficacy. This study aimed to use machine learning algorithms (MLAs) to identify significant predictors of Breast Cancer-Free Interval (BCFI) and to apply bioinformatics tools to investigate the structural and functional implications of CYP2D6 SNPs.

View Article and Find Full Text PDF

According to the World Health Organization, the number of people suffering from depressive disorders worldwide is approaching 350 million. The consequences of depressive disorders include considerable worsening of the quality of life, which frequently leads to social isolation. One of the key factors which may cause depression in adulthood is early life stress, in particular, insufficient maternal care during infancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!