In recent years, people pay more attention to the protection against chemical warfare agents, due to the increase in the probability of usage of these chemical warfare agents in wars or terrorist attacks. In this work, MgO nanoparticles were in-situ growth on the surface of poly(m-phenylene Isophthalamide) (PMIA) forming a flexible and breathable fabric for the detoxification of mustard gas surrogate. The as-prepared nanofibrous membrane possesses a "flower-like" structure of which endows not only increase the specific surface area of the composite but also prevent the agglomeration of the MgO nanoparticles. The detoxification ability of the PMIA@MgO nanofibrous fabric was demonstrated by gas chromatography-mass spectrometer (GC-MS). It is found that after 20 h of reaction time, 70.56% of the mustard gas surrogate have been decomposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2017.12.041 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Eberhard Karls Universität Tübingen: Eberhard Karls Universitat Tubingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, GERMANY.
The direct incorporation of borondipyrromethene (BODIPY) subunits into the structural backbone of covalent organic frameworks (COFs) gives facile access to porous photosensitizers but is still a challenging task. Here, we introduce β‑ketoenamine-linked BDP‑TFP‑COF, which crystallizes in AA‑stacking mode with hcb topology. A comprehensive characterization reveals high crystallinity and enhanced stability in a variety of solvents, excellent mesoporosity (SABET = 1042 m2 g-1), broad light absorption in the visible region, and red emission upon the exfoliation of few-layer COF nanosheets.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), UMR CNRS-ESPCI Paris 8231, ESPCI Paris, PSL University, CNRS, Paris, France.
Adduction on protein nucleophile sites by mustard agents can be monitored to assess detection of retrospective exposure to these agents. Cysteine 34 (Cys34) on human serum albumin was selected as the target of choice. This work targets di- and tripeptides adducted on Cys34 by sulfur mustard, sesquimustard, and nitrogen mustards separated in hydrophilic liquid chromatography (HILIC) and Reversed-Phase (RP) mode.
View Article and Find Full Text PDFHum Exp Toxicol
December 2024
Department of Respiration, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.
Objective: Sulfur mustard (SM) is an important chemical warfare agent. The mechanisms underlying SM toxicity have not been completely elucidated. However, oxidative stress and the subsequent damage to macromolecules have been considered ascrucial steps in SM toxicity.
View Article and Find Full Text PDFExp Eye Res
December 2024
Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States. Electronic address:
Sulfur mustard gas (SM), an alkylating and vesicating agent, has been used frequently in many wars and conflicts. SM exposure to the eye results in several corneal abnormalities including scar/fibrosis formation. However, molecular mechanism for SM induced corneal fibrosis development is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!