Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions.

Ecotoxicol Environ Saf

Key Laboratory of molecular microbiology and technology, Ministry of education, College of Life Sciences, Nankai University, Tianjin 300071,China. Electronic address:

Published: April 2018

A fast-growing fungus with remarkable ability to degrade several azo dyes under non-sterile conditions was isolated and identified. This fungus was identified as Trichoderma tomentosum. Textile effluent of ten-fold dilution could be decolorized by 94.9% within 72h before optimization. Acid Red 3R model wastewater with a concentration of 85.5mgL could be decolorized by 99.2% within the same time after optimization. High-level of manganese peroxidase and low-level of lignin peroxidase activities were detected during the process of decolorization from the culture supernatant, indicating the possible involvement of two enzymes in azo dye decolorization. No aromatic amine products were detected from the degradation products of Acid Red 3R by gas chromatography-mass spectrometry (GC/MS) analysis, indicating the possible involvement of a special symmetrical oxidative degradation pathway. Phytotoxicity assay confirmed the lower toxicity toward the test plant seeds of the degradation products when compared to the original dye.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2017.12.043DOI Listing

Publication Analysis

Top Keywords

azo dyes
8
trichoderma tomentosum
8
non-sterile conditions
8
acid red
8
indicating involvement
8
degradation products
8
efficient degradation
4
degradation azo
4
dyes newly
4
newly isolated
4

Similar Publications

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

The design of efficient advanced oxidation processes (AOPs) in the presence of bicarbonate has long attracted considerable attention in the field of environmental catalysis. In this study, sodium bicarbonate (NaHCO) as one of the most abundant substances in actual water, was introduced to a NaClO/Ru(III) system to enhance the removal of acid orange 7(AO7). NaHCO could significantly improve the removal efficiency of the Ru(III)/NaClO process in HCO at a pH range of 6.

View Article and Find Full Text PDF

Natural Food Colorant Obtained from Wild L. by Ultrasound-Assisted Extraction: Optimization and Characterization.

Foods

January 2025

Departamento Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.

In this study, a novel natural food colorant based on anthocyanins was developed from wild barberry ( L.) fruits using ultrasound-assisted extraction, which was optimized through RSM. Four extraction variables (ultrasound power, time, S/L ratio, and extraction solvent pH) were evaluated in combination.

View Article and Find Full Text PDF

Lophine incorporated azo dye as a novel colorimetric sensor for multiple metal ions.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory of Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi 394650 Surat Gujarat India. Electronic address:

A single molecule sensor for several analytes is indeed desired by the scientists around the world due to obvious advantages. In this report we present a new class of Lophine incorporated azo dyes that has capacity of differential colorimetric detection of several metal ions. Interestingly the sensor was found to have pH dependent selective response towards several metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!