Genetic variations in the DNA replication origins of human papillomavirus family correlate with their oncogenic potential.

Biochim Biophys Acta Gen Subj

Department of Medical Laboratory Sciences, College of Health Sciences, University of Delaware, Newark, DE 19716, United States. Electronic address:

Published: April 2018

Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2017.12.010DOI Listing

Publication Analysis

Top Keywords

dna replication
24
high-risk hpvs
12
binding sites
12
replication origin
8
e2-dna complex
8
replication
7
dna
6
hpvs
5
binding
5
genetic variations
4

Similar Publications

Background: ATR is an apical DDR kinase activated at damaged replication forks. Elimusertib is an oral ATR inhibitor and potentiates irinotecan in human colorectal cancer models.

Methods: To establish dose and tolerability of elimusertib with FOLFIRI, a Bayesian Optimal Interval trial design was pursued.

View Article and Find Full Text PDF

Unlabelled: Avian leukosis virus subgroup J (ALV-J) poses a significant threat to the poultry industry; yet, our understanding of its replication and pathogenic mechanisms is limited. The Ten-Eleven Translocation 2 (TET2) is an indispensable regulatory factor in active DNA demethylation and immune response regulation. This study reports a significant and time-dependent decrease in TET2 levels following ALV-J infection and shows that the reduction of TET2 protein is mediated by the autophagy pathway.

View Article and Find Full Text PDF

Expanding the genomic diversity of human anelloviruses.

Virus Evol

January 2025

MRC-University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom.

Anelloviruses are a group of small, circular, single-stranded DNA viruses that are found ubiquitously across mammalian hosts. Here, we explored a large number of publicly available human microbiome datasets and retrieved a total of 829 anellovirus genomes, substantially expanding the known diversity of these viruses. The majority of new genomes fall within the three major human anellovirus genera: , and , while we also present new genomes of the under-sampled , and genera.

View Article and Find Full Text PDF

Homologous recombination (HR) is important for DNA damage tolerance during replication. The yeast Shu complex, a conserved homologous recombination factor, prevents replication-associated mutagenesis. Here we examine how yeast cells require the Shu complex for coping with MMS-induced lesions during DNA replication.

View Article and Find Full Text PDF

Nucleic Acids and Electrical Signals.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Nucleic acids are highly charged, and electrical forces are involved heavily in how our DNA is compacted and packaged into such a small space, how chromosomes are formed, and how DNA damage is repaired. In addition, electrical forces are crucial to the formation of non-canonical DNA structures called G-Quadruplexes which play multiple biological roles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!