A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. | LitMetric

Urinary tract infections are the utmost common bacterial infections caused by Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, and Serratia marcescens. These uropathogens resist the action of several antibiotics due to their ability to form biofilms. Most of these bacterial pathogens use the quorum sensing (QS) machinery to co-ordinate their cells and regulate several virulence factors and biofilm formation. On the other hand, the anti-quorum sensing (anti-QS) and antibiofilm potential of silver nanoparticles have been well reported against certain bacterial pathogens, but to the best of our knowledge, no report is available against the pathogenicity of uropathogens in particular S. marcescens and P. mirabilis. Therefore, the present study is primarily focused on the anti-QS and antibiofilm potential of Piper betle-based synthesized silver nanoparticles (PbAgNPs) against S. marcescens and P. mirabilis. Initially, the silver nanoparticles were synthesized by the aqueous extract of P. betle and characterized by UV-absorbance spectroscopy, XRD, FT-IR, SEM, TEM, and DLS. The synthesized silver nanoparticles were assessed for their anti-QS activity and the obtained results revealed that the PbAgNPs inhibited the QS-mediated virulence factors such as prodigiosin, protease, biofilm formation, exopolysaccharides and hydrophobicity productions in uropathogens. The gene expression analysis divulged the downregulation of fimA, fimC, flhD, and bsmB genes in S. marcescens and flhB, flhD, and rsbA genes in P. mirabilis, respectively. The in vivo Caenorhabditis elegans assays revealed the non-toxic and anti-adherence efficiency of PbAgNPs. Furthermore, the non-toxic effect of PbAgNPs was also confirmed through peripheral blood mononuclear cells and normal lung epithelial cells. Therefore, the contemporary study demonstrates the use of PbAgNPs as a possible alternative toward conventional antibiotics in controlling QS and biofilm-related uropathogen infections.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-1049-0DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
20
antibiofilm potential
12
aqueous extract
8
anti-quorum sensing
8
bacterial pathogens
8
virulence factors
8
biofilm formation
8
anti-qs antibiofilm
8
marcescens mirabilis
8
synthesized silver
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!