Heterochromatin formation in budding yeast is regulated by the silent information regulator (SIR) complex. The SIR complex comprises the NAD-dependent deacetylase Sir2, the scaffolding protein Sir4, and the nucleosome-binding protein Sir3. Transcriptionally active regions present a challenge to SIR complex-mediated heterochromatic silencing due to the presence of antagonistic histone post-translational modifications, including acetylation and methylation. Methylation of histone H3K4 and H3K79 is dependent on monoubiquitination of histone H2B (H2B-Ub). The SIR complex cannot erase H2B-Ub or histone methylation on its own. The deubiquitinase (DUB) Ubp10 is thought to promote heterochromatic silencing by maintaining low H2B-Ub at sub-telomeres. Here, we biochemically characterized the interactions between Ubp10 and the SIR complex machinery. We demonstrate that a direct interaction between Ubp10 and the Sir2/4 sub-complex facilitates Ubp10 recruitment to chromatin via a co-assembly mechanism. Using hydrolyzable H2B-Ub analogs, we show that Ubp10 activity is lower on nucleosomes compared with H2B-Ub in solution. We find that Sir2/4 stimulates Ubp10 DUB activity on nucleosomes, likely through a combination of targeting and allosteric regulation. This coupling mechanism between the silencing machinery and its DUB partner allows erasure of active PTMs and the transition of a transcriptionally active DNA region to a silent chromatin state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818202 | PMC |
http://dx.doi.org/10.1074/jbc.RA117.000498 | DOI Listing |
Transl Psychiatry
January 2025
Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
Brain anatomy plays a key role in complex behaviors and mental disorders that are sexually divergent. While our understanding of the sex differences in the brain anatomy remains relatively limited, particularly of the underlying genetic and molecular mechanisms that contribute to these differences. We performed the largest study of sex differences in brain volumes (N = 33,208) by examining sex differences both in the raw brain volumes and after controlling the whole brain volumes.
View Article and Find Full Text PDFNat Commun
January 2025
Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
The multi-enzyme pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle and plays vital roles in metabolism, energy production, and cellular signaling. Although all components have been individually characterized, the intact PDHc structure remains unclear, hampering our understanding of its composition and dynamical catalytic mechanisms. Here, we report the in-situ architecture of intact mammalian PDHc by cryo-electron tomography.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia.
Background: The provision of healthcare is complex. When evidence-practice gaps are identified, interventions to improve practice across multi-level systems are required. These interventions often consist of multiple interacting components and behaviours.
View Article and Find Full Text PDFAutophagy
January 2025
Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China.
Induction of macroautophagy/autophagy has been established as an important function elicited by the CGAS-STING1 pathway during pathogen infection. However, it remains unknown whether lysosomal activity within the cell in these settings is concurrently enhanced to cope with the increased autophagic flux. Recently, we discovered that the CGAS-STING1 pathway elevates the degradative capacity of the cell by activating lysosome biogenesis.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associated brain regions, remain unclear. This study applies machine learning techniques to explore region-specific gene expression profiles and identify critical gene programs and transcription factors linked to migraine pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!