A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mucus-PVPA (mucus Phospholipid Vesicle-based Permeation Assay): An artificial permeability tool for drug screening and formulation development. | LitMetric

Mucus-PVPA (mucus Phospholipid Vesicle-based Permeation Assay): An artificial permeability tool for drug screening and formulation development.

Int J Pharm

Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø the Arctic University of Norway, Universitetsveien 57, Tromsø, 9037, Norway. Electronic address:

Published: February 2018

The mucus layer covering all mucosal surfaces in our body is the first barrier encountered by drugs before their potential absorption through epithelial tissues, and could thus affect the drugs' permeability and their effectiveness. Therefore, it is of key importance to have in vitro permeability models that can mimic this specific environment. For this purpose, the novel mucus phospholipid vesicle-based permeation assay (mucus-PVPA) has been developed and used for permeability screening of drugs and formulations. The model proved to be stable under the chosen conditions and demonstrated the ability to discriminate between compounds with different chemical structures and properties. Overall, a decrease in drug permeability was found in the presence of mucus on top of the PVPA barriers, as expected. Moreover, mucoadhesive (chitosan-coated) and mucopenetrating (PEGylated) liposomes were investigated in the newly developed model. The mucus-PVPA was able to distinguish between the different liposomal formulations, confirming the penetration potential of the tested formulations and the related drug permeability. The mucus-PVPA model appears to be a promising in vitro tool able to mimic the environment of mucosal tissues, and could therefore be used for further drug permeability screening and formulation development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.12.038DOI Listing

Publication Analysis

Top Keywords

drug permeability
12
mucus phospholipid
8
phospholipid vesicle-based
8
vesicle-based permeation
8
permeation assay
8
screening formulation
8
formulation development
8
permeability screening
8
permeability
7
mucus-pvpa
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!