Recent research has given us new insights into the molecular biology of extrinsic aging of the skin. Not only does UV irradiation directly cause photoaging of the skin, but also environmental pollutants significantly damage exposed skin by several mechanisms. Exposure to the noxious gases of air pollution with simultaneous exposure to UVA can act synergistically to initiate skin cancer. Also ozone generated from pollutants reacting with UV induces oxidative stress of the skin's surface via formation of lipid peroxidation products, with cascading consequences to deeper layers. Furthermore, new studies have demonstrated that particulate matter (PM) pollutants can penetrate the skin transepidermally and through hair follicles to induce skin aging via the aryl hydrocarbon receptor (AHR), a recently discovered ligand-activated transcription factor that regulates and protects keratinocytes, melanocytes, and fibroblasts. With this understanding that extrinsic aging of the skin is not only due to photoaging, we realize the necessity of protection beyond sunscreen. Fortunately, correctly formulated topical antioxidants can prevent damage inflicted by both UV and environmental pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mad.2017.12.003DOI Listing

Publication Analysis

Top Keywords

skin
8
topical antioxidants
8
extrinsic aging
8
aging skin
8
mechanisms aging
4
aging development-a
4
development-a understanding
4
understanding environmental
4
environmental damage
4
damage skin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!