Introduction: The aim of this study was to analyze the time-dependent in-vitro behavior of the periodontal ligament (PDL) by determining the material parameters using specimens of porcine jawbone. Time-dependent material parameters to be determined were expected to complement the results from earlier biomechanical studies.

Methods: Five mandibular deciduous porcine premolars were analyzed in a combined experimental-numeric study. After selecting suitable specimens (excluding root resorption) and preparing the measurement system, the specimens were deflected by a distance of 0.2 mm at loading times of 0.2, 0.5, 1, 2, 5, 10, and 60 seconds. The deflection of the teeth was determined via a laser optical system, and the resulting forces and torques were measured. To create the finite element models, a microcomputed tomography scanner was used to create 3-dimensional x-ray images of the samples. The individual structures (tooth, PDL, bone) of the jaw segments were reconstructed using a self-developed reconstruction program. A comparison between experiment and simulation was conducted using the results from finite element simulations. Via iterative parameter adjustments, the material parameters (Young's modulus and Poisson's ratio) of the PDL were assessed at different loading velocities.

Results: The clinically observed effect of a distinct increase in force during very short periods of loading was confirmed. Thus, a force of 2.6 N (±1.5 N) was measured at the shortest stress duration of 0.2 seconds, and a force of 1.0 N (±0.5 N) was measured at the longest stress duration of 60 seconds. The numeric determination of the material parameters showed bilinear behavior with a median value of the first Young's modulus between 0.06 MPa (2 seconds) and 0.04 MPa (60 seconds), and the second Young's modulus between 0.30 MPa (10 seconds) and 0.20 MPa (60 seconds). The ultimate strain marking the transition from the first to the second Young's modulus remained almost unchanged with a median value of 6.0% for all loading times.

Conclusion: A combined experimental-numeric analysis is suitable for determining the material properties of the PDL. Microcomputed tomography allows high-precision recordings with only minimum effort. This study confirms the assumption of time dependency and nonlinearity of previous studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2017.05.034DOI Listing

Publication Analysis

Top Keywords

material parameters
16
young's modulus
16
periodontal ligament
8
determining material
8
combined experimental-numeric
8
finite element
8
microcomputed tomography
8
stress duration
8
second young's
8
material
5

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Objectives: Pancreatic duct leaks can cause ascites, and fluid amylase can be used as a marker to suggest pancreatic duct leak; however, there is no reference parameter or cutoff value for diagnosis. We assessed whether a novel ratio of ascitic fluid to serum amylase can reliably predict pancreatic leaks and need for endoscopic retrograde cholangiopancreatography (ERCP).

Materials And Methods: Patients who had fluid amylase from ascitic fluid and serum amylase within one week of confirmed pancreatic leaks via ERCP were included along with appropriate medical and surgical controls.

View Article and Find Full Text PDF

A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study.

Biotechnol Biofuels Bioprod

January 2025

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!