An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidence, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions signaling the presence of the bond order wave phase. This scheme also provides insights into the excitation spectra of both the band and Mott insulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.119.230403 | DOI Listing |
J Am Chem Soc
January 2025
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.
Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells.
View Article and Find Full Text PDFRSC Adv
January 2025
Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China.
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering & Technology (BUET) Dhaka Bangladesh
All-solid-state lithium-ion batteries (ASSLBs) are the next advancement in battery technology which is expected to power the next generation of electronics, particularly electric vehicles due to their high energy density and superior safety. ASSLBs require solid electrolytes with high ionic conductivity to serve as a Li-ion battery, driving extensive research efforts to enhance the ionic conductivity of the existing solid electrolytes. Keeping this in view, the B-site of LiLaTiO (LLTO) solid electrolyte has been partially substituted with Ga and novel Ga-doped LLTO (Li LaTi Ga O) solid-electrolytes are fabricated using the solid-state reaction method, followed by sintering at 1100 °C for 2 h.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Electrical and Computer Engineering, Nazarbayev University, Nazarbayev University, Astana, Kazakhstan, Astana, 010000, KAZAKHSTAN.
Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!