Human norovirus exacts considerable public health and economic losses worldwide. Emerging in vitro cultivation advances are not yet applicable for routine detection of the virus. The current detection and quantification techniques, which rely primarily on nucleic acid amplification, do not discriminate infectious from non-infectious viral particles. The purpose of this article is to present specific details on recent advances in techniques used together in order to acquire further information on the infectivity status of viral particles. One technique involves assessing binding of a norovirus ssDNA aptamer to capsids. Aptamers have the advantage of being easily synthesized and modified, and are inexpensive and stable. Another technique, dynamic light scattering (DLS), has the advantage of observing capsid behavior in solution. Electron microscopy allows for visualization of the structural integrity of the viral capsids. Although promising, there are some drawbacks to each technique, such as non-specific aptamer binding to positively-charged molecules from sample matrices, requirement of purified capsid for DLS, and poor sensitivity for electron microscopy. Nonetheless, when these techniques are used in combination, the body of data produced provides more comprehensive information on norovirus capsid integrity that can be used to infer infectivity, information which is essential for accurate evaluation of inactivation methods or interpretation of virus detection. This article provides protocols for using these methods to discriminate infectious human norovirus particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755425PMC
http://dx.doi.org/10.3791/56444DOI Listing

Publication Analysis

Top Keywords

structural integrity
8
human norovirus
8
discriminate infectious
8
viral particles
8
electron microscopy
8
alternative vitro
4
vitro methods
4
methods determination
4
viral
4
determination viral
4

Similar Publications

Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.

Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.

View Article and Find Full Text PDF

Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Nat Commun

January 2025

Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.

The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

Blood clots are complex structures composed of blood cells and proteins held together by the structural framework provided by an insoluble fibrin network. Factor (F)XIII is a protransglutaminase essential for stabilizing the fibrin network. Activated FXIII(a) introduces novel covalent crosslinks within and between fibrin and other plasma and cellular proteins, and thereby promotes fibrin biochemical and mechanical integrity.

View Article and Find Full Text PDF

Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!