Targeted therapies against the human epidermal growth factor receptor 2 (HER2) have radically changed the outcome of patients with HER2-positive breast cancers. However, a minority of cases displays a heterogeneous distribution of HER2-positive cells, which generates major clinical challenges. To date, no reliable and standardized protocols for the characterization and quantification of HER2 heterogeneous gene amplification in large cohorts have been proposed. Here, we present a high-throughput methodology to simultaneously assess the HER2 status across different topographic areas of multiple breast cancers. In particular, we illustrate the laboratory procedure to construct enhanced tissue microarrays (TMAs) incorporating a targeted mapping of the tumors. All TMA parameters have been specifically optimized for the silver in situ hybridization (SISH) of formalin-fixed paraffin-embedded (FFPE) breast tissues. Immunohistochemical analysis of the prognostic and predictive biomarkers (i.e., ER, PR, Ki67, and HER2) should be performed using automated procedures. A customized SISH protocol has been implemented to allow a high-quality molecular analysis across multiple tissues that underwent different fixation, processing, and storage procedures. In this study, we provide a proof-of-principle that specific DNA sequences could be localized simultaneously in distinct topographic areas of multiple and heterogeneously processed breast cancers using an efficient and cost-effective method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755531PMC
http://dx.doi.org/10.3791/56686DOI Listing

Publication Analysis

Top Keywords

breast cancers
16
gene amplification
8
topographic areas
8
areas multiple
8
her2
5
breast
5
building high-throughput
4
high-throughput screening
4
screening platform
4
platform assess
4

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!