The use of video camera systems in ecological studies of fish continues to gain traction as a viable, non-extractive method of measuring fish lengths and estimating fish abundance. We developed and implemented a rotating stereo-video camera tool that covers a full 360 degrees of sampling, which maximizes sampling effort compared to stationary camera tools. A variety of studies have detailed the ability of static, stereo-camera systems to obtain highly accurate and precise measurements of fish; the focus here was on the development of methodological approaches to quantify fish density using rotating camera systems. The first approach was to develop a modification of the metric MaxN, which typically is a conservative count of the minimum number of fish observed on a given camera survey. We redefine MaxN to be the maximum number of fish observed in any given rotation of the camera system. When precautions are taken to avoid double counting, this method for MaxN may more accurately reflect true abundance than that obtained from a fixed camera. Secondly, because stereo-video allows fish to be mapped in three-dimensional space, precise estimates of the distance-from-camera can be obtained for each fish. By using the 95% percentile of the observed distance from camera to establish species-specific areas surveyed, we account for differences in detectability among species while avoiding diluting density estimates by using the maximum distance a species was observed. Accounting for this range of detectability is critical to accurately estimate fish abundances. This methodology will facilitate the integration of rotating stereo-video tools in both applied science and management contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755459PMC
http://dx.doi.org/10.3791/56635DOI Listing

Publication Analysis

Top Keywords

fish
11
fish density
8
stereo-video tools
8
camera
8
camera systems
8
rotating stereo-video
8
number fish
8
fish observed
8
development methods
4
methods quantifying
4

Similar Publications

Killer whales () have been documented to prey on white sharks (), in some cases causing localised shark displacement and triggering ecological cascades. Notably, a series of such predation events have been reported from South Africa over the last decade, with killer whales specifically targeting sharks' liver. However, observations of these interactions are rare, and knowledge of their frequency across the world's oceans remains limited.

View Article and Find Full Text PDF

Tunas are high-performance pelagic fishes of considerable economic importance and have a suite of biological adaptations for high-speed locomotion. In contrast to our understanding of tuna body and muscle function, mechanosensory systems of tuna are poorly understood. Here we present the discovery of a remarkable sensory lateral line canal within the bilateral tuna keels with tubules that extend to the upper and lower keel surfaces.

View Article and Find Full Text PDF

(), a Gram-negative bacterium commonly found in aquatic environments, has the capacity to be transmitted to humans through consumption of contaminated fish, water, or seafood. In this study, we present a case report concerning a 77-year-old female patient who experienced an acute exacerbation of chronic heart failure, subsequently developing severe septic shock due to necrotizing fasciitis caused by . Infections caused by are more prevalent during warmer months, particularly in regions characterized by dense aquaculture or the presence of natural water bodies.

View Article and Find Full Text PDF

Background: Preventing postoperative atrial fibrillation (POAF) as one of the most significant complications of cardiovascular surgeries remains a major clinical challenge. We conducted a systematic review with network meta-analysis of randomized controlled trials, to identify the most effective and safe anti-inflammatory drugs to prevent new-onset POAF.

Methods: MEDLINE, Embase, Web of Science, and Cochrane Library were searched without language or publication-date restriction on August 8, 2022 (updated on August 8, 2023).

View Article and Find Full Text PDF

AIP56, an AB toxin secreted by subsp. , has tropism for myeloid cells.

Front Immunol

January 2025

Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.

Introduction: The AB-type toxin AIP56 is a key virulence factor of Photobacterium damselae subsp. piscicida (Phdp), inducing apoptosis in fish immune cells. The discovery of AIP56-like and AIP56-related toxins in diverse organisms, including human-associated Vibrio strains, highlights the evolutionary conservation of this toxin family, suggesting that AIP56 and its homologs may share conserved receptors across species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!