Detecting prostate cancer (PCa) using non-invasive diagnostic markers still remains a challenge. The aim of this study was the identification of urine proteins that are sufficiently sensitive and specific to detect PCa in the early stages. Comparative proteomics profiling of urine from patients with PCa, benign prostate hyperplasia, bladder cancer, and renal cancer, coupled with bioinformatics analysis, were performed. Statistically significant difference in abundance showed 20 and 85 proteins in the 2-D DIGE/MS and label-free LC-MS/MS experiments, respectively. In silico analysis indicated activation, binding, and cell movement of subset of immune cells as the top affected cellular functions in PCa, together with the down-regulation of Acute Phase Response Signaling and Liver X Receptor/ Retinoid X Receptor (LXR/RXR) activation pathways. The most promising biomarkers were 35, altered in PCa when compared to more than one group. Half of these have confirmed localization in normal or PCa tissues. Twenty proteins (CD14, AHSG, ENO1, ANXA1, CLU, COL6A1, C3, FGA, FGG, HPX, PTGDS, S100A9, LMAN2, ITIH4, ACTA2, GRN, HBB, PEBP1, CTSB, SPP1) are oncogenes, tumor suppressors, and multifunctional proteins with highly confirmed involvement in PCa, while 9 (AZU1, IGHG1, RNASE2, PZP, REG1A, AMY1A, AMY2A, ACTG2, COL18A1) have been associated with different cancers, but not with PCa so far, and may represent novel findings. LC-MS/MS data are available via ProteomeXchange with identifier PXD008407.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874760 | PMC |
http://dx.doi.org/10.3390/proteomes6010001 | DOI Listing |
Microlife
January 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany.
Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS.
View Article and Find Full Text PDFProteomics
January 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.
View Article and Find Full Text PDFElectrophoresis
January 2025
Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) is an invasive agricultural pest with developed resistance to abamectin in some strains due to frequent treatment with the pesticide. In this study, we examined differentially expressed proteins (DEPs) between abamectin-resistant (Aba; under abamectin selective pressure) and susceptible strains (Aba; without abamectin selective pressure) of F. occidentalis.
View Article and Find Full Text PDFBMC Microbiol
January 2025
School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Mycobacterium tuberculosis (M. tuberculosis) and Mycobacterium abscessus (M. abscessus) are important pathogens that can cause lung diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Translational Immunology, University Medical Center Utrecht, KC 02.085.2, P.O. Box 85090, 3508 AB, Utrecht, The Netherlands.
The proximity extension assay (PEA) enables large-scale proteomic investigations across numerous proteins and samples. However, discrepancies between measurements, known as batch-effects, potentially skew downstream statistical analyses and increase the risks of false discoveries. While implementing bridging controls (BCs) on each plate has been proposed to mitigate these effects, a clear method for utilizing this strategy remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!