The Divalent Elements Changes in Early Stages of Chronic Kidney Disease.

Biol Trace Elem Res

Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan.

Published: September 2018

As the glomerular filtration rate (GFR) decreases, it can cause imbalance in some divalent elements. These imbalances can cause increased oxidative stress in patients with renal impairment. The aim of present study was to investigate the changes of these divalent elements with CKD progression. One hundred and ninety-four patients with chronic kidney diseases (CKD) were divided into five stages, stage 1, 2, 3a, 3b, 4, and were recruited into this study. The divalent elements, calcium, magnesium, phosphorus, as well as iron, zinc, and copper were determined in clinical chemistry analyzer. Higher CKD stages were found to be associated with increased levels of phosphorus and copper; P values were 0.002 and 0.004, respectively. Also, higher CKD stages were associated with decreased levels of zinc; P value was 0.002, after adjustment for age, gender, smoke, education, diabetes, hypertension, and BMI. Decreased levels of zinc and elevated levels of phosphorus and copper might increase the oxidative stress and complications in CKD patients. Future randomized studies are needed to show whether adjusting dietary intake of phosphorus, copper, and zinc might affect the progression of CKD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-017-1228-3DOI Listing

Publication Analysis

Top Keywords

divalent elements
16
phosphorus copper
12
chronic kidney
8
oxidative stress
8
higher ckd
8
ckd stages
8
stages associated
8
levels phosphorus
8
decreased levels
8
levels zinc
8

Similar Publications

The exploration of perovskite compounds incorporating actinide and divalent elements reveals remarkable characteristics. Focusing on PbBkO, RaBkO, and SrBkO, these materials were studied using density functional theory (DFT) via the CASTEP code to analyze their electronic, optical, and mechanical properties. The results show semiconductor behavior, with respective band gaps of 1.

View Article and Find Full Text PDF

We theoretically investigate how the intranuclear environment influences the charge of a nucleosome core particle (NCP)-the fundamental unit of chromatin consisting of DNA wrapped around a core of histone proteins. The molecular-based theory explicitly considers the size, shape, conformation, charge, and chemical state of all molecular species-thereby linking the structural state with the chemical/charged state of the system. We investigate how variations in monovalent and divalent salt concentrations, as well as pH, affect the charge distribution across different regions of an NCP and quantify the impact of charge regulation.

View Article and Find Full Text PDF

Milk osteopontin has high iron-binding capacity and facilitates iron absorption in intestinal cells.

J Dairy Sci

January 2025

Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark. Electronic address:

Insufficient absorption of iron and the consequent development of iron deficiency have serious health consequences. Hence, identification and development of iron delivery systems that can increase the bioavailability and uptake of dietary iron are important. Osteopontin (OPN) is an acidic and highly phosphorylated integrin-binding protein found in milk where it exists as a full-length protein and as N-terminally derived fragments.

View Article and Find Full Text PDF

Salmonella enterica serovar typhimurium effectors spiA and spiC promote replication by modulating iron metabolism and oxidative stress.

Vet Microbiol

January 2025

College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China. Electronic address:

Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a major threat to the health and safety of animal-derived foods worldwide. Recently, we have reported that S.

View Article and Find Full Text PDF

The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!