Analeptic agent from microbes upon cyanide degradation.

Appl Microbiol Biotechnol

Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.

Published: February 2018

Microbes being the initial form of life and ubiquitous in occurrence, they adapt to the environment quickly. The microbial metabolism undergoes alteration to ensure conducive environment either by degrading the toxic substances or producing toxins to protect themselves. The presence of cyanide waste triggers the cyanide degrading enzymes in the microbes which facilitate the microbes to utilize the cyanide for its growth. To enable the degradation of cyanide, the microbes also produce the necessary cofactors and enhancers catalyzing the degradation pathways. Pterin, a cofactor of the enzyme cyanide monooxygenase catalyzing the oxidation of cyanide, is considered to be a potentially bioactive compound. Besides that, the pterins also act as cofactor for the enzymes involved in neurotransmitter metabolism. The therapeutic values of pterin as neuromodulating agent validate the necessity to pursue the commercial production of pterin. Even though chemical synthesis is possible, the non-toxic methods of pterin production need to be given greater attention in future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-017-8674-xDOI Listing

Publication Analysis

Top Keywords

cyanide
7
microbes
5
analeptic agent
4
agent microbes
4
microbes cyanide
4
cyanide degradation
4
degradation microbes
4
microbes initial
4
initial form
4
form life
4

Similar Publications

Computational exploration of the electrochemical oxidation mechanism of thiocyanate catalyzed by cobalt-phthalocyanines.

Phys Chem Chem Phys

January 2025

Departamento de Química, Facultad de Ciencias, Universidad de Chile, P. O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

In this study, we focused on the mechanism of the electrocatalytic oxidation of thiocyanate, which in traditional electrodes typically requires high overpotentials. As models for reducing these overpotentials and catalyzing the reaction, we used a set of modified cobalt phthalocyanines (CoPc), known as electrocatalysts. Using DFT calculations, we explored how modifications to CoPc by adding electron-donating and withdrawing groups and the coordination of 4-amino thiophenol impact the oxidation process.

View Article and Find Full Text PDF

A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system.

Environ Sci Ecotechnol

January 2025

Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.

Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.

View Article and Find Full Text PDF

A set of nCN/WO composites was synthesized through a simple thermal treatment for gold recovery from the simulated effluent of a non-cyanide-based plating bath. The obtained results exhibited that all nCN/WO composites demonstrated a higher photocatalytic activity for gold recovery than their pristine components due to the formation of nanocomposites which paved a convenient pathway for charge transfer. Among all synthesized composites, the 5.

View Article and Find Full Text PDF

Tree bark is a crucial tissue that defends tree stems from invasions by microorganisms. However, our understanding of the constitutive chemical defense mechanisms of the tree barks remains limited. Our group recently discovered that the inner bark of Sorbus commixta exhibited potent inhibitory effects on the growth of the white-rot fungus, Trametes versicolor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!