Development of a Non-Invasive Blink Reflexometer.

IEEE J Transl Eng Health Med

Department of HealthExercise and Sport Science, The Citadel.

Published: December 2017

Qualitative assessments of the blink reflex are used clinically to assess neurological status in critical care, operating room, and rehabilitative settings. Despite decades of literature supporting the use of quantitative measurements of the blink reflex in the evaluation of multiple neurological disorders, clinical adoption has failed. Thus, there remains an unmet clinical need for an objective, portable, non-invasive metric of neurological health that can be used in a variety of settings. We have developed a high-speed videography-based device to trigger, record, and analyze a blink reflex. A pilot study was performed to compare the device's measurements to the published literature of electromyographic measurements, currently the gold standard. The study results indicate that the device is a viable tool to obtain fast, objective, and quantitative metrics of a blink reflex, and has promise as a non-invasive diagnostic assessment of neurological health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739534PMC
http://dx.doi.org/10.1109/JTEHM.2017.2782669DOI Listing

Publication Analysis

Top Keywords

blink reflex
16
neurological health
8
blink
5
development non-invasive
4
non-invasive blink
4
blink reflexometer
4
reflexometer qualitative
4
qualitative assessments
4
assessments blink
4
reflex
4

Similar Publications

Pretrained Deep Neural Network Kin-SiM for Single-Molecule FRET Trace Idealization.

J Phys Chem B

January 2025

Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.

Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.

View Article and Find Full Text PDF

Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.

View Article and Find Full Text PDF

Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing.

Nat Commun

January 2025

Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.

Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).

View Article and Find Full Text PDF

Blink completeness and rate in dry eye disease: An investigator-masked, prospective registry-based, cross-sectional, prognostic study.

Cont Lens Anterior Eye

January 2025

Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand. Electronic address:

Purpose: To investigate the prognostic ability of blink rate and the proportion of incomplete blinking to predict dry eye disease diagnosis, as defined by the TFOS DEWS II criteria.

Methods: A total of 453 community residents (282 females, 171 males; mean ± SD age, 37 ± 19 years) were recruited in an investigator-masked, prospective registry-based, cross-sectional, prognostic study. Dry eye symptomology, tear film quality, and ocular surface characteristics were assessed in a single clinical session, and blink parameters evaluated by an independent masked observer.

View Article and Find Full Text PDF

A recruiting rate () of 0.1-5 s has been proposed as the criterion for super-resolution spontaneously blinking rhodamines. Accurate prediction of the recruiting rate () of rhodamines is very important for developing spontaneously blinking rhodamines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!