Background And Purpose: Predicting the efficacy of anticancer therapy is the holy grail of drug development and treatment selection in the clinic. To achieve this goal, scientists require pre-clinical models that can reliably screen anticancer agents with robust clinical correlation. However, there is increasing challenge to develop models that can accurately capture the diversity of the tumor ecosystem, and therefore reliably predict how tumors respond or resistant to treatment. Indeed, tumors are made up of a heterogeneous landscape comprising malignant cells, normal and abnormal stroma, immune cells, and dynamic microenvironment containing chemokines, cytokines and growth factors. In this mini-review we present a focused, brief perspective on emerging preclinical models for anticancer therapy that attempt to address the challenge posed by tumor heterogeneity, highlighting biomarkers of response and resistance.
Recent Findings: Starting from 2-dimensional and 3-dimensional models, we discuss how organoid co-cultures have led to accelerated efforts in anti-cancer drug screening, and advanced our fundamental understanding for mechanisms of action using high-throughput platforms that interrogate various biomarkers of 'clinical' efficacy. Then, mentioning the limitations that exist, we focus on and human explant technologies and models, which build-in intrinsic tumor heterogeneity using the native microenvironment as a scaffold. Importantly, we will address how these models can be harnessed to understand cancer immunotherapy, an emerging therapeutic strategy that seeks to recalibrate the body's own immune system to fight cancer.
Conclusion: Over the past several decades, numerous model systems have emerged to address the exploding market of drug development for cancer. While all of the present models have contributed critical information about tumor biology, each one carries limitations. Harnessing pre-clinical models that incorporate cell heterogeneity is beginning to address some of the underlying challenges associated with predicting clinical efficacy of novel anticancer agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743226 | PMC |
http://dx.doi.org/10.4172/2155-9929.1000356 | DOI Listing |
Nanomedicine
January 2025
Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China. Electronic address:
Carbohydr Res
January 2025
Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. Electronic address:
Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Introduction: The objective of this study was to assess the effectiveness of ivermectin and colchicine as treatment options for coronavirus disease 2019 (COVID-19).
Methodology: A three-arm randomized controlled clinical trial was conducted in the Triage Clinic of the family medicine department at Ain Shams University Hospitals on participants who had been diagnosed with moderate COVID-19. Patients aged < 18 years or > 65 years, with any co-morbidities, pregnant or lactating females, and those with mild or severe COVID-19 confirmed cases were excluded.
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFVirol J
January 2025
Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.
Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!