RTL1 promotes melanoma proliferation by regulating Wnt/β-catenin signalling.

Oncotarget

Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signalling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China.

Published: December 2017

Cutaneous melanoma is a highly malignant and metastatic skin cancer with high mortality. However, its underlying mechanisms remain largely unclear. Here, we found that retrotransposon-like 1 (RTL1) is highly enriched in melanoma tissue, especially in early and horizontal growth tissues. Knockdown of RTL1 in melanoma cells resulted in cell proliferation suppression; cell cycle arrest at G1 phase; and down-regulation of E2F1, CYCLIN D1, cyclin-dependent kinase 6 (CDK6) and c-MYC. Moreover, overexpression of RTL1 in melanoma cells accelerated cell proliferation, promoted passage of the cell cycle beyond G1 phase, and increased the expression of cell cycle related genes. Mechanistically, we found that knockdown of RTL1 inhibited the Wnt/β-Catenin pathway by regulating the expression of genes specifically involved in β-CATENIN stabilization. Furthermore, the overexpression and knockdown of β-CATENIN rescued the effects of RTL1 on melanoma cell proliferation and the cell cycle. These findings were also confirmed via tumour xenografts in nude mice. Together, our results demonstrated that RTL1 promotes melanoma cell proliferation by regulating the Wnt/β-Catenin signalling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739699PMC
http://dx.doi.org/10.18632/oncotarget.22523DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
cell cycle
16
rtl1 melanoma
12
rtl1 promotes
8
promotes melanoma
8
proliferation regulating
8
regulating wnt/β-catenin
8
wnt/β-catenin signalling
8
knockdown rtl1
8
melanoma cells
8

Similar Publications

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

TIMP-2 Promotes Wound Healing by Suppressing Matrix Metalloproteinases and Inflammatory Cytokines in Corneal Epithelial Cells.

Am J Pathol

December 2024

Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA. Electronic address:

Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix (ECM) remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathological conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!