Mesenchymal stem cells (MSCs) are increasingly used in cell-based therapy due to their multiple differentiation capacity, low expression of co-stimulatory factors and immunosuppressive effect. However, accumulating studies reported the recognition and rejection of engrafted MSCs, which eventually led to the fail of clinical trials. Toll-like receptors (TLRs) are important in mediating the immune response. In the present study, macrophage-activated lipopeptide-2 (MALP-2) was introduced to activate the TLR6 pathway in umbilical cord MSCs (UCMSCs). PBLs isolated from healthy volunteers were co-cultured with UCMSCs to measure whether activation of TLR6 of UCMSCs could stimulate immune responses. Reverse transcription-quantitative polymerase chain reaction and immunohistochemistry were performed to detect pro-inflammatory molecules and differentiation status of UCMSCs, respectively. The results indicated that activation of TLR6 in UCMSCs increased the proliferation of peripheral blood leukocytes (PBLs) and enhanced the release of lactate dehydrogenase in damaged UCMSCs, which confirmed the role of TLR6 in promoting the immunogenicity of UCMSCs. Furthermore, quantitative polymerase chain reaction demonstrated that the expression of proinflammatory molecules (including IL-1β, IL-6, IL-8, IL-10, CCL1 and CCL4) was induced, whereas the expression of stem cell markers (Klf4 and Nanog) was inhibited. The differentiation results indicated that activation of TLR6 had no effect on the differentiation capacity of UCMSCs. All these findings suggest that stimulation of TLR6 pathway may increase the immunogenicity of UCMSCs in detections. In conclusion, the results of the current study indicated a new role of TLR6 in regulating the biological function of UCMSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740809 | PMC |
http://dx.doi.org/10.3892/etm.2017.5262 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.
Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.
Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).
J Dent Sci
January 2025
Endodontic Department, Changzhou Stomatological Hospital, Changzhou, China.
Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan.
Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).
View Article and Find Full Text PDFJ Dent Sci
January 2025
School of Dentistry, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Background/purpose: Oral mucosal lesions are associated with a variety of pathological conditions. Most deep-learning-based convolutional neural network (CNN) systems for computer-aided diagnosis of oral lesions have typically concentrated on determining limited aspects of differential diagnosis. This study aimed to develop a CNN-based diagnostic model capable of classifying clinical photographs of oral ulcerative and associated lesions into five different diagnoses, thereby assisting clinicians in making accurate differential diagnoses.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China.
Background/purpose: The local inflammatory microenvironment created by periodontitis negatively impacts periodontal tissue regeneration, necessitating the development of methods to enhance the regenerative capacity of stem cells. This study explored the regulatory role and underlying mechanism of miR-508-5p in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs).
Materials And Methods: The regulatory roles of miR-508-5p in osteogenic differentiation of hPDLSCs were investigated through its inhibition or overexpression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!