Neuronal stimulation leads to immediate early gene (IEG) expression through calcium-dependent mechanisms. In recent years, considerable attention has been devoted to the transcriptional responses after neuronal stimulation, but relatively little is known about the changes in chromatin dynamics that follow neuronal activation. Here, we use fluorescence recovery after photobleaching, biochemical fractionations, and chromatin immunoprecipitation to show that KCl-induced depolarization in primary cultured cortical neurons causes a rapid release of the linker histone H1 from chromatin, concomitant with IEG expression. H1 release is repressed by PARP inhibition, PARP1 deletion, a non-PARylatable H1, as well as phosphorylation inhibitions and a nonphosphorylatable H1, leading to hindered IEG expression. Further, H1 is replaced by PARP1 on IEG promoters after neuronal stimulation, and PARP inhibition blocks this reciprocal binding response. Our results demonstrate the relationship between neuronal excitation and chromatin plasticity by identifying the roles of polyadenosine diphosphate ribosylation and phosphorylation of H1 in regulating H1 chromatin eviction and IEG expression in stimulated neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800798 | PMC |
http://dx.doi.org/10.1083/jcb.201703141 | DOI Listing |
Front Behav Neurosci
December 2024
Department of Psychology, University of California, Davis, Davis, CA, United States.
Molecular and genetic techniques now allow selective tagging and manipulation of the population of neurons, often referred to as "engram cells," that were active during a specific experience. One common approach to labeling these cells is to use the transgenic mouse (TetTag). In addition to tagging cells active during learning, it is common to examine the reactivation of these cells using immediate early gene (IEG) expression as an index of neural activity.
View Article and Find Full Text PDFBehav Brain Res
December 2024
Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
The hippocampus (HPC) is essential for navigation and memory, tracking environmental continuity and change, including navigation relative to moving targets. CA1 ensembles expressing immediate-early gene (IEG) Arc and Homer1a RNA are contextually specific. While IEG expression correlates with HPC-dependent task demands, the effects of behavioral demands on IEG-expressing ensembles remain unclear.
View Article and Find Full Text PDFDrug Discov Ther
December 2024
Department of Neurosurgery, University of Toyama, Japan.
Previously, we developed a dynamic magnetic field (DMF) device using neodymium magnets that induced c-fos expression in cortical neurons, while activity-regulated cytoskeleton-associated protein (Arc), and brain-derived neurotrophic factor (BDNF) remained unaffected. The precise signal transduction pathway for c-fos induction under DMF was unclear. This study aimed to investigate the mechanism of immediate early gene (IEG) induction using calcium channel blockers (CCBs).
View Article and Find Full Text PDFUnlabelled: Although many methods for automated fluorescent-labeled cell detection have been proposed, not all of them assume a highly inhomogeneous background arising from complex biological structures. Here, we propose an automated cell detection algorithm that accounts for and subtracts the inhomogeneous background by avoiding high-intensity pixels in the blur filtering calculation. Cells were detected by intensity thresholding in the background-subtracted image, and the algorithm's performance was tested on NeuN- and c-Fos-stained images in the mouse prefrontal cortex and hippocampal dentate gyrus.
View Article and Find Full Text PDFFront Mol Neurosci
October 2024
School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States.
The rodent hippocampus is a spatially organized neuronal network that supports the formation of spatial and episodic memories. We conducted bulk RNA sequencing and spatial transcriptomics experiments to measure gene expression changes in the dorsal hippocampus following the recall of active place avoidance (APA) memory. Through bulk RNA sequencing, we examined the gene expression changes following memory recall across the functionally distinct subregions of the dorsal hippocampus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!