A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells. | LitMetric

DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells.

Arterioscler Thromb Vasc Biol

From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.).

Published: February 2018

Objective: DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition.

Approach And Results: In the present study, we used a murine model of atherosclerosis () in conjunction with and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1 (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-β (transforming growth factor-β)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation.

Conclusions: Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.117.310079DOI Listing

Publication Analysis

Top Keywords

atherosclerotic plaque
20
dkk3
8
dkk3 dickkopf
8
plaque phenotype
8
smooth muscle
8
muscle cells
8
stem cells
8
atherosclerotic
6
plaque
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!