Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Manipulation of cellular functions and structures by introduction of genetic materials inside cells has been one of the most prominent research areas in biomedicine. High-frequency ultrasound acoustic-transfection has recently been developed and confirmed by intracellular delivery of small molecules into HeLa cells at the single-cell level with high cell viability. After we proved the concept underlying the acoustic-transfection technique, treatment conditions for different human cancer cell lines have been intensively investigated to further develop acoustic-transfection as a versatile and adaptable transfection method by satisfying the requirements of high-delivery efficiency and cell membrane permeability with minimal membrane disruption. To determine optimal treatment conditions for different cell lines, we developed a quantitative intracellular delivery score based on delivery efficiency, cell membrane permeability and cell viability after 4 and 20 h of treatment. The intracellular delivery of macromolecules and the simultaneous intracellular delivery of two molecules under optimal treatment conditions were successfully achieved. We found that DNA plasmid was delivered by acoustic-transfection technique into epiblast stem cells, which expressed transient mCherry fluorescence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800999 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2017.11.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!