Background: Knowledge of radiobiology is of paramount importance to be able to grasp and have an in-depth understanding of the consequences of ionizing radiation. One of the most important effects of this physical stressor's interaction to targeted and non-targeted cells, tissues and organs is on the late effects on the development of primary and secondary cancers. Thus, an in-depth understanding of the mechanisms of radiation carcinogenesis remains to be elucidated, and some studies have demonstrated or proposed a role of non-targeted effect in excess risk of cancer incidence. The non-targeted effect in radiobiology refers to a dynamic complex response in non-irradiated tissues caused by the release of presumably of clastogenic factors from irradiated cells. Although, most of these responses in non-targeted tissues have marked similarities to irradiated tissues, other studies have shown some differences. Also, the non-targeted effect has shown sex and tissue specificity that are seen in irradiated tissues too. So far, several studies have been conducted to depict mechanisms that may be involved in this phenomenon. Epigenetic dysfunctions, DNA damage and cell death are responsible for initiation of several signaling pathways that finally result in secretion of clastogenic factors. Moreover, studies have shown that damage to both nucleus and mitochondrial DNA, membrane and some organelles is involved. Oxidized DNA associated with other cell death factors stimulates secretion of inflammatory as well as some anti-inflammatory cytokines from irradiated area. Additionally, oxidative stress that results in damage to cellular structures to include cell membranes can affect secretion of exosomes and miRNAs. These bystander effect exogenous mediators migrate to distant tissues and stimulate various signaling pathways which can lead to changes in immune responses, epigenetic modulations and radiation carcinogenesis.
Conclusion: In this review, we focus on descriptive and hierarchical events with emphasis on the molecular and functional interactions of ionizing radiation with cells to the mechanisms involved in cancer induction in non-targeted tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1874471011666171229123130 | DOI Listing |
Int J Med Sci
January 2025
Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.
Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.
Anthracyclines (ANTs) are widely used in cancer therapy, particularly for lymphoma, sarcoma, breast cancer, and childhood leukemia, and have become the cornerstone of chemotherapy for various malignancies. However, it is associated with fatal and dose-dependent cardiovascular complications, especially cardiotoxicity. Mitochondrial quality control mechanisms, encompassing mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, maintain mitochondrial homeostasis in the cardiovascular system.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Pharmacology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, China.
Longikaurin A (LK-A), a naturally occurring ent-kaurane diterpenoid, has been identified as a promising anti-cancer agent. This study aims to elucidate the anti-tumorigenic effects of LK-A on oral squamous cell carcinoma (OSCC) cells and to unravel its underlying mechanisms. assays, including CCK-8 and EdU, were performed to assess cell viability and proliferation.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 33302, Taiwan.
Previous studies revealed that tumor-associated macrophages/microglia (TAMs) promoted glioma invasiveness during tumor progression and after radiotherapy. However, the communication of TAMs with tumor cells remains unclear. This study aimed to examine the role of small extracellular vesicles (sEVs) derived from TAMs in TAMs-mediated brain tumor invasion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!