Self-Cleaning Microcavity Array for Photovoltaic Modules.

ACS Appl Mater Interfaces

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Published: January 2018

Development of self-cleaning coatings is of great interest for the photovoltaic (PV) industry, as soiling of the modules can significantly reduce their electrical output and increase operational costs. We fabricated flexible polymeric films with novel disordered microcavity array (MCA) topography from fluorinated ethylene propylene (FEP) by hot embossing. Because of their superhydrophobicity with water contact angles above 150° and roll-off angles below 5°, the films possess self-cleaning properties over a wide range of tilt angles, starting at 10°, and contaminant sizes (30-900 μm). Droplets that impact the FEP MCA surface with velocities of the same order of magnitude as that of rain bounce off the surface without impairing its wetting properties. Additionally, the disordered MCA topography of the films enhances the performance of PV devices by improving light incoupling. Optical coupling of the FEP MCA films to a glass-encapsulated multicrystalline silicon solar cell results in 4.6% enhancement of the electrical output compared to that of an uncoated device.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b15579DOI Listing

Publication Analysis

Top Keywords

microcavity array
8
electrical output
8
mca topography
8
fep mca
8
self-cleaning microcavity
4
array photovoltaic
4
photovoltaic modules
4
modules development
4
development self-cleaning
4
self-cleaning coatings
4

Similar Publications

Collecting fog water is crucial for dry areas since natural moisture and fog are significant sources of freshwater. Sustainable and energy-efficient water collection systems can take a page out of the cactus's playbook by mimicking its native fog gathering process. Inspired by the unique geometric structure of the cactus spine, we fabricated a bioinspired artificial fog collector consisting of cactus spines featuring barbs of different sizes and angles on the surfaces for water collection and a series of microcavities within microchannels inspired by Nepenthes Alata on the bottom to facilitate water flowing to the reservoir.

View Article and Find Full Text PDF

Microcavity Array-Based Digital SERS Chip for Rapid and Accurate Label-free Quantitative Detection of Live Bacteria.

ACS Sens

November 2024

College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.

In this study, we developed a novel digital surface-enhanced Raman spectroscopy (SERS) chip that integrates an inverted pyramid microcavity array, a microchannel cover plate, and a multilayer gold nanoparticle (AuNP) SERS substrate. This innovative design exploits the synergistic effects of the microcavity array and the microchannel to enable rapid and large-scale digital discretization of bacterial suspensions. The concentration effect of the picoliter cavities, combined with the superior Raman enhancement effect of the multilayer AuNP SERS substrate, allows for the precise identification of live bacteria within the microcavities through in situ and label-free SERS testing after a short incubation period.

View Article and Find Full Text PDF

For successful treatment of diseases, sufficient therapeutics must be provided to the body. Microneedle applications in therapeutic delivery and analytics sampling are restricted because of various issues, including smaller area for drug loading and analytics sampling. To achieve sufficient drug loading and analytics sampling and improve drug penetration while maintaining painless administration, patch-type microneedle arrays were designed and fabricated using polymer casting from a conical cavity mold.

View Article and Find Full Text PDF

Probing the killing potency of tumor-infiltrating lymphocytes on microarrayed colorectal cancer tumoroids.

NPJ Precis Oncol

August 2024

Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Immunotherapy has emerged as a new standard of care for certain cancer patients with specific cellular and molecular makeups. However, there is still an unmet need for ex vivo models able to readily assess the effectiveness of immunotherapeutic treatments in a high-throughput and patient-specific manner. To address this issue, we have developed a microarrayed system of patient-derived tumoroids with recreated immune microenvironments that are optimized for the high-content evaluation of tumor-infiltrating lymphocyte functionality.

View Article and Find Full Text PDF

Suppression of Secondary Electron Emission by Vertical Graphene Coating on Ni Microcavity Substrate.

Nanomaterials (Basel)

July 2024

CSSC-Wuxi Silent Electric System (SES) Technology Co., Ltd., Plot 83-D, National High Tech Development Zone, New District, Xinwu District, No. 1, Xikun Road, Wuxi 214000, China.

Suppression of secondary electron emission (SEE) from metal surfaces is crucial for enhancing the performance of particle accelerators, spacecraft, and vacuum electronic devices. Earlier research has demonstrated that either etching the metal surface to create undulating structures or coating it with materials having low secondary electron yield (SEY) can markedly decrease SEE. However, the effectiveness of growing vertical graphene (VG) on laser-etched metal surfaces in suppressing SEE remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!