Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the Sonic Hedgehog signaling pathway.

Cell Signal

Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States. Electronic address:

Published: April 2018

Sonic Hedgehog (Shh) signaling plays key regulatory roles in embryonic development and postnatal homeostasis and repair. Modulation of the Shh pathway is known to cause malformations and malignancies associated with dysregulated tissue growth. However, our understanding of the molecular mechanisms by which Shh regulates cellular proliferation is incomplete. Here, using mouse embryonic fibroblasts, we demonstrate that the Forkhead box gene Foxd1 is transcriptionally regulated by canonical Shh signaling and required for downstream proliferative activity. We show that Foxd1 deletion abrogates the proliferative response to SHH ligand while FOXD1 overexpression alone is sufficient to induce cellular proliferation. The proliferative response to both SHH ligand and FOXD1 overexpression was blocked by pharmacologic inhibition of cyclin-dependent kinase signaling. Time-course experiments revealed that Shh pathway activation of Foxd1 is followed by downregulation of Cdkn1c, which encodes a cyclin-dependent kinase inhibitor. Consistent with a direct transcriptional regulation mechanism, we found that FOXD1 reduces reporter activity of a Fox enhancer sequence in the second intron of Cdkn1c. Supporting the applicability of these findings to specific biological contexts, we show that Shh regulation of Foxd1 and Cdkn1c is recapitulated in cranial neural crest cells and provide evidence that this mechanism is operational during upper lip morphogenesis. These results reveal a novel Shh-Foxd1-Cdkn1c regulatory circuit that drives the mitogenic action of Shh signaling and may have broad implications in development and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503977PMC
http://dx.doi.org/10.1016/j.cellsig.2017.12.007DOI Listing

Publication Analysis

Top Keywords

shh signaling
12
shh
9
drives mitogenic
8
sonic hedgehog
8
shh pathway
8
cellular proliferation
8
proliferative response
8
response shh
8
shh ligand
8
ligand foxd1
8

Similar Publications

The role of sonic hedgehog signaling in the oropharyngeal epithelium during jaw development.

Congenit Anom (Kyoto)

December 2024

Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.

Sonic hedgehog (Shh) is expressed in the oropharyngeal epithelium, including the frontonasal ectodermal zone (FEZ), which is defined as the boundary between Shh and Fgf8 expression domains in the frontonasal epithelium. To investigate the role of SHH signaling from the oropharyngeal epithelium, we generated mice in which Shh expression is specifically deleted in the oropharyngeal epithelium (Isl1-Cre; Shh). In the mutant mouse, Shh expression was excised in the oropharyngeal epithelium as well as FEZ and ventral forebrain, consistent with the expression pattern of Isl1.

View Article and Find Full Text PDF

There is an urgent necessity to devise efficient tactics to tackle the inevitable development of resistance to osimertinib, which is a third-generation epidermal growth factor receptor (EGFR) inhibitor used in treating EGFR-mutant nonsmall cell lung cancer (NSCLC). This study demonstrates that combining itraconazole with osimertinib synergistically reduces the proliferation and migration, enhances the apoptosis of osimertinib-resistant cells, and effectively inhibits the growth of osimertinib-resistant tumors. Mechanistically, itraconazole combined with osimertinib promotes the proteasomal degradation of sonic hedgehog (SHH), resulting in inactivation of the SHH/Dual-specificity phosphatase 13B (DUSP13B)/p-STAT3 and Hedgehog pathways, suppressing Myc proto-oncogene protein (c-Myc).

View Article and Find Full Text PDF

Primary cilia as antennas for oxygen.

Am J Physiol Cell Physiol

December 2024

Institute of Physiology, University Duisburg-Essen, Essen, Germany.

Over the last few decades, the primary cilium, an inconspicuous cell organelle, has increasingly become the focus of current research. The primary cilium is a microtubule-based, non-motile, antenna-like structure that is present on almost all mammalian cells. The ciliary membrane incorporates a large number of receptor molecules, which further characterize this cellular organelle.

View Article and Find Full Text PDF

Non-syndromic orofacial clefts (NSOC) are common craniofacial birth defects, and result from both genetic and environmental factors. NSOC include three major sub-phenotypes: non-syndromic cleft lip with palate (NSCLP), non-syndromic cleft lip only (NSCLO) and non-syndromic cleft palate only (NSCPO), NSCLP and NSCLO are also sometimes grouped as non-syndromic cleft lip with or without cleft palate (NSCL/P) based on epidemiology. Currently known loci only explain a limited proportion of the heritability of NSOC.

View Article and Find Full Text PDF

The potential role of chromodomain helicase DNA-binding protein 3 in defining the cervical width by regulating the early growth stage of the apical papilla during tooth development.

J Oral Biosci

December 2024

Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan. Electronic address:

Objective: This study aimed to evaluate the role of the chromodomain helicase DNA-binding protein 3 (CHD3) in tooth morphogenesis in Chd3 knockout mice.

Methods: Chd3 knockout mice were generated using the CRISPR-Cas9 method. Mandibular first molars were extracted from the mice and their littermates and morphometrically analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!