The application of electroencephalogram (EEG) generated by human viewing images is a new thrust in image retrieval technology. A P300 component in the EEG is induced when the subjects see their point of interest in a target image under the rapid serial visual presentation (RSVP) experimental paradigm. We detected the single-trial P300 component to determine whether a subject was interested in an image. In practice, the latency and amplitude of the P300 component may vary in relation to different experimental parameters, such as target probability and stimulus semantics. Thus, we proposed a novel method, Target Recognition using Image Complexity Priori (TRICP) algorithm, in which the image information is introduced in the calculation of the interest score in the RSVP paradigm. The method combines information from the image and EEG to enhance the accuracy of single-trial P300 detection on the basis of traditional single-trial P300 detection algorithm. We defined an image complexity parameter based on the features of the different layers of a convolution neural network (CNN). We used the TRICP algorithm to compute for the complexity of an image to quantify the effect of different complexity images on the P300 components and training specialty classifier according to the image complexity. We compared TRICP with the HDCA algorithm. Results show that TRICP is significantly higher than the HDCA algorithm (Wilcoxon Sign Rank Test, p<0.05). Thus, the proposed method can be used in other and visual task-related single-trial event-related potential detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746233 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184713 | PLOS |
J Neural Eng
December 2024
Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea, Ulsan, 44919, Korea (the Republic of).
Objective: In the pursuit of refining P300-based brain-computer interfaces (BCIs), our research aims to propose a novel stimulus design focused on selective attention and task relevance to address the challenges of P300-based BCIs, including the necessity of repetitive stimulus presentations, accuracy improvement, user variability, and calibration demands.
Approach: In the oddball task for P300-based BCIs, we develop a stimulus design involving task-relevant dynamic stimuli implemented as finger-tapping to enhance the elicitation and consistency of event-related potentials (ERPs). We further improve the performance of P300-based BCIs by optimizing ERP feature extraction and classification in offline analyses.
Neural Netw
February 2025
Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada; Mila - Quebec AI Institute, Montreal, Quebec, Canada.
Deep learning solutions have rapidly emerged for EEG decoding, achieving state-of-the-art performance on a variety of decoding tasks. Despite their high performance, existing solutions do not fully address the challenge posed by the introduction of many hyperparameters, defining data pre-processing, network architecture, network training, and data augmentation. Automatic hyperparameter search is rarely performed and limited to network-related hyperparameters.
View Article and Find Full Text PDFSignals (Basel)
March 2024
Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
Brain responses to discrete stimuli are modulated when multiple stimuli are presented in sequence. These alterations are especially pronounced when the time course of an evoked response overlaps with responses to subsequent stimuli, such as in a rapid serial visual presentation (RSVP) paradigm used to control a brain-computer interface (BCI). The present study explored whether the measurement or classification of select brain responses during RSVP would improve through application of an established technique for dealing with overlapping stimulus presentations, known as irregular or "jittered" stimulus onset interval (SOI).
View Article and Find Full Text PDFIEEE Trans Biomed Eng
August 2024
Objective: Brain-Computer Interface (BCI) provides a direct communication channel between the brain and external devices. After combining with the Rapid Serial Visualization Presentation (RSVP) paradigm, the RSVP-BCI system can be utilized for human vision-based fast information retrieval. Currently only binary classification of single-trial EEG can be achieved, also the research on the multi-class target RSVP is few, which limited information transfer rate and the application scenarios of the system.
View Article and Find Full Text PDFJ Neural Eng
July 2024
Insight SFI Research Centre for Data Analytics, School of Computing, Dublin City University, Dublin, Ireland.
Brain-computer interfaces (BCI) have been extensively researched in controlled lab settings where the P300 event-related potential (ERP), elicited in the rapid serial visual presentation (RSVP) paradigm, has shown promising potential. However, deploying BCIs outside of laboratory settings is challenging due to the presence of contaminating artifacts that often occur as a result of activities such as talking, head movements, and body movements. These artifacts can severely contaminate the measured EEG signals and consequently impede detection of the P300 ERP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!