A few new d-mannitol-based monoaza-15-crown-5 type chiral lariat ethers and 18-crown-6 type macrocycles were synthesized. These crown compounds were used as phase transfer catalysts in asymmetric Michael addititons and in a Darzens condensation under mild conditions to afford the corresponding products in a few cases in good to excellent enantioselectivities. In the Michael addition of diethyl acetoxymalonate to trans-chalcone, in the addition of diethyl acetamidomalonate to ß-nitrostyrene, in the reaction of diethyl bromomalonate with benzylidene malononitriles, in the cyclopropanation reaction of diethyl bromomalonate and 2-benzylidene-1,3-indandione, and in the Darzens condensation of α-chloroacetophenone with benzaldehyde, maximum enantioselectivities of 39%, 65%, 99%, 56%, and 62%, respectively, were obtained in the presence of the d-mannitol-based macrocycles as the catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.22800 | DOI Listing |
Beilstein J Org Chem
January 2025
Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.
Axial chirality is present in a variety of naturally occurring compounds, and is becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway.
Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China.
Photocatalytic degradation of the azo dye orange II using NdVO/VO/BiVO under visible light is reported here, and this oxygen-rich defect three-phase heterojunction structure is constructed using a two-step cation exchange method. This heterojunction significantly enhances the separation and migration efficiency of photo-induced charges, while the accompanying oxygen defects effectively capture photogenerated electrons, thereby suppressing the recombination of electrons and holes. Experimental characterization and theoretical calculations demonstrate the efficient separation and transfer capabilities of photogenerated carriers and their excellent photocatalytic degradation performance.
View Article and Find Full Text PDFACS Nano
January 2025
Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
Although the use of ultraviolet (UV) light-emitting diode backlight with red, green, and blue color-conversion layers (CCLs) in displays simplifies the manufacturing process and improves display uniformity, research on blue CCLs remains limited and has been mostly reported in the sky-blue region (> 470 nm), which is insufficient to satisfy the Rec. 2020 color standard. As halide perovskites offer a high extinction coefficient, color purity, and photoluminescence quantum yield (PLQY), they become highly competitive color-converting materials for CCLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!