Glycogen Synthase Kinase-3β as a Putative Therapeutic Target for Bipolar Disorder.

Curr Drug Metab

Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, United States.

Published: November 2018

Background: Bipolar disorder (BD) is a debilitating mental ailment characterized by recurrent episodes of mania and depression. Primary mood-stabilizing drugs like lithium and valproate alleviate the hypomanic or mild to moderate manic episodes in patients with BD. One of the extensively studied underlying mechanisms for these pharmacological interventions is inhibition of intracellular signaling cascades associated with glycogen synthase kinase-3 beta (GSK-3β), a multi-functional serine-threonine kinase.

Objective And Method: To summarize the different mechanistic aspects associated with GSK-3β signaling involved in the pathophysiology of BD and highlights drug discovery approaches pursued for the development of GSK-3β inhibition with detailed strength, weakness, opportunity, and threat (SWOT) analysis. In this review, we endeavor to establish the correlation between neuronal GSK-3β inhibition and anti-manic response of different therapeutics used for the treatment of patients with BD.

Results: The gene depletion or pharmacological inhibition of GSK-3β reproduces some of the behavioral effects of lithium including reduction of depression- and manic-like behaviors in rodents, which attested the intracellular GSK- 3β inhibition as one of the critical steps in mediating behavioral effect of mood-stabilizers. Furthermore, converging evidence supported the participation of GSK-3β in the regulation of various neurobehavioral functions governed by neurotransmitters dopamine and serotonin. Apart from its crucial involvement in the mechanism of action of mood stabilizers, GSK-3β signaling pathways have also received attention for their role in the effects of psychoactive therapies like antidepressants, antipsychotics, and neurotrophic factors.

Conclusion: We anticipate that the GSK-3β could be a druggable target for several incurable neuropsychiatric disorders including BD.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389200219666171227203737DOI Listing

Publication Analysis

Top Keywords

glycogen synthase
8
bipolar disorder
8
gsk-3β
8
gsk-3β signaling
8
gsk-3β inhibition
8
inhibition
5
synthase kinase-3β
4
kinase-3β putative
4
putative therapeutic
4
therapeutic target
4

Similar Publications

Due to the intensification of human activities, the ecosystems are being polluted by heavy metals. The pollution of heavy metals in agricultural systems has become a serious issue of global concern. This study detected the bioaccumulation of cadmium (Cd) in broad beans and aphids through continuous exposure to varying concentrations of Cd pollution (0, 3.

View Article and Find Full Text PDF

Upregulation of Insulin and Ecdysone Signaling in Relation to Diapause Termination in Eggs Exposed to 5 °C.

Insects

December 2024

Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan.

In the present study, we investigated the possible correlation between insulin/ecdysone signaling and chilling-induced egg diapause termination in . Changes in () and () gene expression levels in chilled eggs (whose diapause had been terminated by chilling to 5 °C for 90 days) exhibited no significant increase after being transferred to 25 °C, which differed from both non-diapause eggs and HCl-treated eggs. We further compared the differential temporal expressions of (, -, and ), ( and ), and ( () and ()) as well as () genes between chilled eggs and eggs kept at 25 °C.

View Article and Find Full Text PDF

In Vivo and Computational Studies on Sitagliptin's Neuroprotective Role in Type 2 Diabetes Mellitus: Implications for Alzheimer's Disease.

Brain Sci

November 2024

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.

Background/objectives: Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 () inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM).

Methods: T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain.

View Article and Find Full Text PDF

Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.

View Article and Find Full Text PDF

FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!