Ruminiclostridium cellulolyticum produces extracellular cellulosomes which contain interalia numerous family-9 glycoside hydrolases, including the inactive Cel9V. The latter shares the same organization and 79% sequence identity with the active cellulase Cel9E. Nevertheless, two aromatic residues and a four-residue stretch putatively critical for the activity are missing in Cel9V. Introduction of one Trytophan and the four-residue stretch restored some weak activity in Cel9V, whereas the replacement of its catalytic domain by that of Cel9E generated a fully active cellulase. Altogether our data indicate that a series of mutations in the catalytic domain of Cel9V lead to an essentially inactive cellulase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.12957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!