Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice.

J Neurochem

Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Aichi, Japan.

Published: April 2018

Cystatin C (CysC) is a major protein component of Bunina bodies, which are a pathological hallmark observed in the remaining motor neurons of patients with amyotrophic lateral sclerosis (ALS). Dominant mutations in the SOD1 gene, encoding Cu/Zn superoxide dismutase (SOD1), are causative for a subset of inherited ALS cases. Our previous study showed that CysC exerts a neuroprotective effect against mutant SOD1-mediated toxicity in vitro; however, in vivo evidence of the beneficial effects mediated by CysC remains obscure. Here we examined the therapeutic potential of recombinant human CysC in vivo using a mouse model of ALS in which the ALS-linked mutated SOD1 gene is expressed (SOD1 mice). Intracerebroventricular administration of CysC during the early symptomatic SOD1 mice extended their survival times. Administered CysC was predominantly distributed in ventral horn neurons including motor neurons, and induced autophagy through AMP-activated kinase activation to reduce the amount of insoluble mutant SOD1 species. Moreover, PGC-1α, a disease modifier of ALS, was restored by CysC through AMP-activated kinase activation. Finally, the administration of CysC also promoted aggregation of CysC in motor neurons, which is similar to Bunina bodies. Taken together, our findings suggest that CysC represents a promising therapeutic candidate for ALS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947136PMC
http://dx.doi.org/10.1111/jnc.14285DOI Listing

Publication Analysis

Top Keywords

motor neurons
12
cysc
10
intracerebroventricular administration
8
amyotrophic lateral
8
lateral sclerosis
8
bunina bodies
8
sod1 gene
8
sod1 mice
8
administration cysc
8
amp-activated kinase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!